Semi-simple Carrousels and the Monodromy

David B. Massey[1]

  • [1] Northeastern University Dept. of Mathematics Boston MA, 02115 (USA)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 1, page 85-100
  • ISSN: 0373-0956

Abstract

top
Let 𝒰 be an open neighborhood of the origin in n + 1 and let f : ( 𝒰 , 0 ) ( , 0 ) be complex analytic. Let z 0 be a generic linear form on n + 1 . If the relative polar curve Γ f , z 0 1 at the origin is irreducible and the intersection number ( Γ f , z 0 1 · V ( f ) ) 0 is prime, then there are severe restrictions on the possible degree n cohomology of the Milnor fiber at the origin. We also obtain some interesting, weaker, results when ( Γ f , z 0 1 · V ( f ) ) 0 is not prime.

How to cite

top

Massey, David B.. "Semi-simple Carrousels and the Monodromy." Annales de l’institut Fourier 56.1 (2006): 85-100. <http://eudml.org/doc/10144>.

@article{Massey2006,
abstract = {Let $\mathcal\{U\}$ be an open neighborhood of the origin in $\mathbb\{C\}^\{n+1\}$ and let $f:(\mathcal\{U\}, \mathbf\{0\})\rightarrow (\mathbb\{C\}, 0)$ be complex analytic. Let $z_0$ be a generic linear form on $\mathbb\{C\}^\{n+1\}$. If the relative polar curve $\Gamma ^1_\{f, z_0\}$ at the origin is irreducible and the intersection number $\big (\Gamma ^1_\{f, z_0\}\cdot V(f))_\mathbf\{0\}$ is prime, then there are severe restrictions on the possible degree $n$ cohomology of the Milnor fiber at the origin. We also obtain some interesting, weaker, results when $\big (\Gamma ^1_\{f, z_0\}\cdot V(f))_\mathbf\{0\}$ is not prime.},
affiliation = {Northeastern University Dept. of Mathematics Boston MA, 02115 (USA)},
author = {Massey, David B.},
journal = {Annales de l’institut Fourier},
keywords = {Carrousel; polar curve; monodromy; Milnor fiber; carrousel},
language = {eng},
number = {1},
pages = {85-100},
publisher = {Association des Annales de l’institut Fourier},
title = {Semi-simple Carrousels and the Monodromy},
url = {http://eudml.org/doc/10144},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Massey, David B.
TI - Semi-simple Carrousels and the Monodromy
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 1
SP - 85
EP - 100
AB - Let $\mathcal{U}$ be an open neighborhood of the origin in $\mathbb{C}^{n+1}$ and let $f:(\mathcal{U}, \mathbf{0})\rightarrow (\mathbb{C}, 0)$ be complex analytic. Let $z_0$ be a generic linear form on $\mathbb{C}^{n+1}$. If the relative polar curve $\Gamma ^1_{f, z_0}$ at the origin is irreducible and the intersection number $\big (\Gamma ^1_{f, z_0}\cdot V(f))_\mathbf{0}$ is prime, then there are severe restrictions on the possible degree $n$ cohomology of the Milnor fiber at the origin. We also obtain some interesting, weaker, results when $\big (\Gamma ^1_{f, z_0}\cdot V(f))_\mathbf{0}$ is not prime.
LA - eng
KW - Carrousel; polar curve; monodromy; Milnor fiber; carrousel
UR - http://eudml.org/doc/10144
ER -

References

top
  1. N. A’Campo, Le nombre de Lefschetz d’une monodromie, Indag. Math. 35 (1973), 113-118 Zbl0276.14004MR320364
  2. C. Caubel, Variation of the Milnor Fibration in Pencils of Hypersurface Singularities, Proc. London Math. Soc. (3) 83 (2001), 330-350 Zbl1022.32010MR1839457
  3. D. T. Lê, Calcul du Nombre de Cycles Évanouissants d’une Hypersurface Complexe, Ann. Inst. Fourier, Grenoble 23 (1973), 261-270 Zbl0293.32013MR330501
  4. D. T. Lê, La Monodromie n’a pas de Points Fixes, J. Fac. Sci. Univ. Tokyo, Sec. 1A 22 (1975), 409-427 Zbl0355.32012MR401756
  5. D. T. Lê, The Geometry of the Monodromy Theorem, 8 (1978), Tata Inst. Fundam. Res., Studies in Math. Zbl0434.32010
  6. D. T. Lê, G.-M. Greuel, Spitzen, Doppelpunkte und vertikale Tangenten in der Diskriminante verseller Deformationen von vollständigen Durchschnitten, Math. Ann. 222 (1976), 71-88 Zbl0318.32015MR441961
  7. D. T. Lê, D. Massey, Hypersurface Singularities and Milnor Equisingularity, (2005) Zbl1107.32011
  8. D. T. Lê, B. Perron, Sur la Fibre de Milnor d’une Singularité Isolée en Dimension Complexe Trois, C.R. Acad. Sci. 289 (1979), 115-118 Zbl0451.32007
  9. D. Massey, Lê Cycles and Hypersurface Singularities, Lecture Notes in Mathematics 1615 (1995) Zbl0835.32002MR1441075
  10. D. Massey, The Sebastiani-Thom Isomorphism in the Derived Category, Compos. Math. 125 (2001), 353-362 Zbl0986.32004MR1818986
  11. D. Massey, The Nexus Diagram and Integral Restrictions on the Monodromy, (2004) 
  12. J. Milnor, Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies 61 (1968) Zbl0184.48405MR239612
  13. D. Siersma, Isolated Line Singularities, Proc. Symp. Pure Math. 40 (1983), 485-496 Zbl0514.32007MR713274
  14. B. Teissier, Cycles évanescents, sections planes et conditions de Whitney, Astérisque 7-8 (1973), 285-362 Zbl0295.14003MR374482
  15. M. Tibăr, The Lefschetz Number of a Monodromy Transformation, (1992) Zbl1009.32501
  16. M. Tibăr, Carrousel monodromy and Lefschetz number of Singularities, Enseign. Math. (2) 39 (1993), 233-247 Zbl0809.32010MR1252066

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.