Semi-simple Carrousels and the Monodromy
- [1] Northeastern University Dept. of Mathematics Boston MA, 02115 (USA)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 1, page 85-100
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMassey, David B.. "Semi-simple Carrousels and the Monodromy." Annales de l’institut Fourier 56.1 (2006): 85-100. <http://eudml.org/doc/10144>.
@article{Massey2006,
abstract = {Let $\mathcal\{U\}$ be an open neighborhood of the origin in $\mathbb\{C\}^\{n+1\}$ and let $f:(\mathcal\{U\}, \mathbf\{0\})\rightarrow (\mathbb\{C\}, 0)$ be complex analytic. Let $z_0$ be a generic linear form on $\mathbb\{C\}^\{n+1\}$. If the relative polar curve $\Gamma ^1_\{f, z_0\}$ at the origin is irreducible and the intersection number $\big (\Gamma ^1_\{f, z_0\}\cdot V(f))_\mathbf\{0\}$ is prime, then there are severe restrictions on the possible degree $n$ cohomology of the Milnor fiber at the origin. We also obtain some interesting, weaker, results when $\big (\Gamma ^1_\{f, z_0\}\cdot V(f))_\mathbf\{0\}$ is not prime.},
affiliation = {Northeastern University Dept. of Mathematics Boston MA, 02115 (USA)},
author = {Massey, David B.},
journal = {Annales de l’institut Fourier},
keywords = {Carrousel; polar curve; monodromy; Milnor fiber; carrousel},
language = {eng},
number = {1},
pages = {85-100},
publisher = {Association des Annales de l’institut Fourier},
title = {Semi-simple Carrousels and the Monodromy},
url = {http://eudml.org/doc/10144},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Massey, David B.
TI - Semi-simple Carrousels and the Monodromy
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 1
SP - 85
EP - 100
AB - Let $\mathcal{U}$ be an open neighborhood of the origin in $\mathbb{C}^{n+1}$ and let $f:(\mathcal{U}, \mathbf{0})\rightarrow (\mathbb{C}, 0)$ be complex analytic. Let $z_0$ be a generic linear form on $\mathbb{C}^{n+1}$. If the relative polar curve $\Gamma ^1_{f, z_0}$ at the origin is irreducible and the intersection number $\big (\Gamma ^1_{f, z_0}\cdot V(f))_\mathbf{0}$ is prime, then there are severe restrictions on the possible degree $n$ cohomology of the Milnor fiber at the origin. We also obtain some interesting, weaker, results when $\big (\Gamma ^1_{f, z_0}\cdot V(f))_\mathbf{0}$ is not prime.
LA - eng
KW - Carrousel; polar curve; monodromy; Milnor fiber; carrousel
UR - http://eudml.org/doc/10144
ER -
References
top- N. A’Campo, Le nombre de Lefschetz d’une monodromie, Indag. Math. 35 (1973), 113-118 Zbl0276.14004MR320364
- C. Caubel, Variation of the Milnor Fibration in Pencils of Hypersurface Singularities, Proc. London Math. Soc. (3) 83 (2001), 330-350 Zbl1022.32010MR1839457
- D. T. Lê, Calcul du Nombre de Cycles Évanouissants d’une Hypersurface Complexe, Ann. Inst. Fourier, Grenoble 23 (1973), 261-270 Zbl0293.32013MR330501
- D. T. Lê, La Monodromie n’a pas de Points Fixes, J. Fac. Sci. Univ. Tokyo, Sec. 1A 22 (1975), 409-427 Zbl0355.32012MR401756
- D. T. Lê, The Geometry of the Monodromy Theorem, 8 (1978), Tata Inst. Fundam. Res., Studies in Math. Zbl0434.32010
- D. T. Lê, G.-M. Greuel, Spitzen, Doppelpunkte und vertikale Tangenten in der Diskriminante verseller Deformationen von vollständigen Durchschnitten, Math. Ann. 222 (1976), 71-88 Zbl0318.32015MR441961
- D. T. Lê, D. Massey, Hypersurface Singularities and Milnor Equisingularity, (2005) Zbl1107.32011
- D. T. Lê, B. Perron, Sur la Fibre de Milnor d’une Singularité Isolée en Dimension Complexe Trois, C.R. Acad. Sci. 289 (1979), 115-118 Zbl0451.32007
- D. Massey, Lê Cycles and Hypersurface Singularities, Lecture Notes in Mathematics 1615 (1995) Zbl0835.32002MR1441075
- D. Massey, The Sebastiani-Thom Isomorphism in the Derived Category, Compos. Math. 125 (2001), 353-362 Zbl0986.32004MR1818986
- D. Massey, The Nexus Diagram and Integral Restrictions on the Monodromy, (2004)
- J. Milnor, Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies 61 (1968) Zbl0184.48405MR239612
- D. Siersma, Isolated Line Singularities, Proc. Symp. Pure Math. 40 (1983), 485-496 Zbl0514.32007MR713274
- B. Teissier, Cycles évanescents, sections planes et conditions de Whitney, Astérisque 7-8 (1973), 285-362 Zbl0295.14003MR374482
- M. Tibăr, The Lefschetz Number of a Monodromy Transformation, (1992) Zbl1009.32501
- M. Tibăr, Carrousel monodromy and Lefschetz number of Singularities, Enseign. Math. (2) 39 (1993), 233-247 Zbl0809.32010MR1252066
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.