A note on Bézout's theorem
We present a version of Bézout's theorem basing on the intersection theory in complex analytic geometry. Some applications for products of surfaces and curves are also given.
We present a version of Bézout's theorem basing on the intersection theory in complex analytic geometry. Some applications for products of surfaces and curves are also given.
We show that non-flatness of a morphism φ:X→ Y of complex-analytic spaces with a locally irreducible target of dimension n manifests in the existence of vertical components in the n-fold fibred power of the pull-back of φ to the desingularization of Y. An algebraic analogue follows: Let R be a locally (analytically) irreducible finite type ℂ-algebra and an integral domain of Krull dimension n, and let S be a regular n-dimensional algebra of finite type over R (but not necessarily a finite R-module),...
We study coherent subsheaves 𝓓 of the holomorphic tangent sheaf of a complex manifold. A description of the corresponding 𝓓-stable ideals and their closed complex subspaces is sketched. Our study of non-holonomicity is based on the Noetherian property of coherent analytic sheaves. This is inspired by the paper [3] which is related with some problems of mechanics.
Soit un germe en de 1-forme différentielle holomorphe, satisfaisant la condition d’intégrabilité et non dicritique, i.e. sur toute surface non intégrale de , on ne peut tracer, au voisinage de 0, qu’un nombre fini de germes de courbes analytiques , intégrales de , avec . Alors possède un germe d’hypersurface analytique intégrale.
On donne des évaluations précises de la croissance modérée des intégrales de fonctions de classe de Nilsson locale dans , exprimées par des caractéristiques topologiques des courbes de ramification des intégrands.
Let f: ℝⁿ → ℝ be a C² semialgebraic function and let c be an asymptotic critical value of f. We prove that there exists a smallest rational number such that |x|·|∇f| and are separated at infinity. If c is a regular value and , then f is a locally trivial fibration over c, and the trivialisation is realised by the flow of the gradient field of f.
An effective formula for the Łojasiewicz exponent for analytic curves in a neighbourhood of 0 ∈ ℂ is given.
The Łojasiewicz exponent of the gradient of a convergent power series h(X,Y) with complex coefficients is the greatest lower bound of the set of λ > 0 such that the inequality holds near for a certain c > 0. In the paper, we give an estimate of the Łojasiewicz exponent of grad h using information from the Newton diagram of h. We obtain the exact value of the exponent for non-degenerate series.