Page 1 Next

Displaying 1 – 20 of 34

Showing per page

A note on Bézout's theorem

Sławomir Rams, Piotr Tworzewski, Tadeusz Winiarski (2005)

Annales Polonici Mathematici

We present a version of Bézout's theorem basing on the intersection theory in complex analytic geometry. Some applications for products of surfaces and curves are also given.

Flatness testing over singular bases

Janusz Adamus, Hadi Seyedinejad (2013)

Annales Polonici Mathematici

We show that non-flatness of a morphism φ:X→ Y of complex-analytic spaces with a locally irreducible target of dimension n manifests in the existence of vertical components in the n-fold fibred power of the pull-back of φ to the desingularization of Y. An algebraic analogue follows: Let R be a locally (analytically) irreducible finite type ℂ-algebra and an integral domain of Krull dimension n, and let S be a regular n-dimensional algebra of finite type over R (but not necessarily a finite R-module),...

Holomorphic non-holonomic differential systems on complex manifolds

S. Dimiev (1991)

Annales Polonici Mathematici

We study coherent subsheaves 𝓓 of the holomorphic tangent sheaf of a complex manifold. A description of the corresponding 𝓓-stable ideals and their closed complex subspaces is sketched. Our study of non-holonomicity is based on the Noetherian property of coherent analytic sheaves. This is inspired by the paper [3] which is related with some problems of mechanics.

Hypersurfaces intégrales des feuilletages holomorphes

Felipe Cano, Jean-François Mattei (1992)

Annales de l'institut Fourier

Soit ω un germe en 0 C n de 1-forme différentielle holomorphe, satisfaisant la condition d’intégrabilité ω d ω = 0 et non dicritique, i.e. sur toute surface Z non intégrale de ω , on ne peut tracer, au voisinage de 0, qu’un nombre fini de germes de courbes analytiques ( Γ i , P i ) , intégrales de ω , avec P i Z Sing ω . Alors ω possède un germe d’hypersurface analytique intégrale.

Le lemme fondamental de Nilsson dans le cas analytique local

Le Van Thanh (1982)

Annales de l'institut Fourier

On donne des évaluations précises de la croissance modérée des intégrales de fonctions de classe de Nilsson locale dans C 2 , exprimées par des caractéristiques topologiques des courbes de ramification des intégrands.

On gradient at infinity of semialgebraic functions

Didier D'Acunto, Vincent Grandjean (2005)

Annales Polonici Mathematici

Let f: ℝⁿ → ℝ be a C² semialgebraic function and let c be an asymptotic critical value of f. We prove that there exists a smallest rational number ϱ c 1 such that |x|·|∇f| and | f ( x ) - c | ϱ c are separated at infinity. If c is a regular value and ϱ c < 1 , then f is a locally trivial fibration over c, and the trivialisation is realised by the flow of the gradient field of f.

On the Łojasiewicz exponent of the gradient of a holomorphic function

Andrzej Lenarcik (1998)

Banach Center Publications

The Łojasiewicz exponent of the gradient of a convergent power series h(X,Y) with complex coefficients is the greatest lower bound of the set of λ > 0 such that the inequality | g r a d h ( x , y ) | c | ( x , y ) | λ holds near 0 C 2 for a certain c > 0. In the paper, we give an estimate of the Łojasiewicz exponent of grad h using information from the Newton diagram of h. We obtain the exact value of the exponent for non-degenerate series.

Currently displaying 1 – 20 of 34

Page 1 Next