On the embedding and compactification of -complete manifolds
Ionuţ Chiose[1]
- [1] University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science 851 South Morgan Street Chicago, Illinois 60607 (USA) & Romanian Academy Institute of Mathematics RO-70700 Bucharest (Romania)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 2, page 373-396
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topChiose, Ionuţ. "On the embedding and compactification of $q$-complete manifolds." Annales de l’institut Fourier 56.2 (2006): 373-396. <http://eudml.org/doc/10150>.
@article{Chiose2006,
abstract = {We characterize intrinsically two classes of manifolds that can be properly embedded into spaces of the form $\mathbb\{ P\}^N\setminus \mathbb\{ P\}^\{N-q\}$. The first theorem is a compactification theorem for pseudoconcave manifolds that can be realized as $\overline\{X\}\setminus (\overline\{X\}\cap \mathbb\{ P\}^\{N-q\})$ where $\overline\{X\}\subset \mathbb\{ P\}^N$ is a projective variety. The second theorem is an embedding theorem for holomorphically convex manifolds into $\mathbb\{ P\}^1\times \mathbb\{ C\}^N$.},
affiliation = {University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science 851 South Morgan Street Chicago, Illinois 60607 (USA) & Romanian Academy Institute of Mathematics RO-70700 Bucharest (Romania)},
author = {Chiose, Ionuţ},
journal = {Annales de l’institut Fourier},
keywords = {Pseudoconvex and pseudoconcave spaces; embeddings and compactifications; positive line bundles; Remmert reduction; pseudoconvex space; pseudoconcave space; embedding; compactification},
language = {eng},
number = {2},
pages = {373-396},
publisher = {Association des Annales de l’institut Fourier},
title = {On the embedding and compactification of $q$-complete manifolds},
url = {http://eudml.org/doc/10150},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Chiose, Ionuţ
TI - On the embedding and compactification of $q$-complete manifolds
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 2
SP - 373
EP - 396
AB - We characterize intrinsically two classes of manifolds that can be properly embedded into spaces of the form $\mathbb{ P}^N\setminus \mathbb{ P}^{N-q}$. The first theorem is a compactification theorem for pseudoconcave manifolds that can be realized as $\overline{X}\setminus (\overline{X}\cap \mathbb{ P}^{N-q})$ where $\overline{X}\subset \mathbb{ P}^N$ is a projective variety. The second theorem is an embedding theorem for holomorphically convex manifolds into $\mathbb{ P}^1\times \mathbb{ C}^N$.
LA - eng
KW - Pseudoconvex and pseudoconcave spaces; embeddings and compactifications; positive line bundles; Remmert reduction; pseudoconvex space; pseudoconcave space; embedding; compactification
UR - http://eudml.org/doc/10150
ER -
References
top- A. Andreotti, Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves, Bull. Soc. Math. France 91 (1963), 1-38 Zbl0113.06403
- A. Andreotti, G. Tomassini, Some remarks on pseudoconcave manifolds, Essays on Topology and Related Topics (1970), Springer, New York Zbl0192.58102
- D. Barlet, A. Silva, Convexité holomorphe intermédiaire, Math. Ann. 296 (1993), 649-665 Zbl0788.32007
- J.-P. Demailly, Estimations pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), 457-511 Zbl0507.32021
- J.-P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. France, N. S. 19 (1985) Zbl0579.32012
- P. Dingoyan, Un phénomène de Hartogs dans les variétés projectives, Math. Z 232 (1999), 217-240 Zbl0941.32011
- F.R. Harvey, H.B. Lawson, On boundaries of complex analytic varieties. II, Ann. Math 106 (1977), 213-238 Zbl0361.32010
- L. Hörmander, An introduction to complex analysis in several variables, (1966), D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London Zbl0138.06203
- N. Mok, An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties, Bull. Soc. Math. France 112 (1984), 197-250 Zbl0536.53062
- A. Nadel, On complex manifolds which can be compactified by adding finitely many points, Invent. Math. 101 (1990), 173-189 Zbl0712.32019
- T. Ohsawa, Hodge spectral sequence and symmetry on compact Kähler spaces, Publ. Res. Inst. Math. Sci. 23 (1987), 613-625 Zbl0635.32008
- S. Takayama, Adjoint linear series on weakly -complete Kähler manifolds. I. Global projective embedding, Math. Ann. 311 (1998), 501-531 Zbl0912.32021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.