On the embedding and compactification of q -complete manifolds

Ionuţ Chiose[1]

  • [1] University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science 851 South Morgan Street Chicago, Illinois 60607 (USA) & Romanian Academy Institute of Mathematics RO-70700 Bucharest (Romania)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 2, page 373-396
  • ISSN: 0373-0956

Abstract

top
We characterize intrinsically two classes of manifolds that can be properly embedded into spaces of the form N N - q . The first theorem is a compactification theorem for pseudoconcave manifolds that can be realized as X ¯ ( X ¯ N - q ) where X ¯ N is a projective variety. The second theorem is an embedding theorem for holomorphically convex manifolds into 1 × N .

How to cite

top

Chiose, Ionuţ. "On the embedding and compactification of $q$-complete manifolds." Annales de l’institut Fourier 56.2 (2006): 373-396. <http://eudml.org/doc/10150>.

@article{Chiose2006,
abstract = {We characterize intrinsically two classes of manifolds that can be properly embedded into spaces of the form $\mathbb\{ P\}^N\setminus \mathbb\{ P\}^\{N-q\}$. The first theorem is a compactification theorem for pseudoconcave manifolds that can be realized as $\overline\{X\}\setminus (\overline\{X\}\cap \mathbb\{ P\}^\{N-q\})$ where $\overline\{X\}\subset \mathbb\{ P\}^N$ is a projective variety. The second theorem is an embedding theorem for holomorphically convex manifolds into $\mathbb\{ P\}^1\times \mathbb\{ C\}^N$.},
affiliation = {University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science 851 South Morgan Street Chicago, Illinois 60607 (USA) & Romanian Academy Institute of Mathematics RO-70700 Bucharest (Romania)},
author = {Chiose, Ionuţ},
journal = {Annales de l’institut Fourier},
keywords = {Pseudoconvex and pseudoconcave spaces; embeddings and compactifications; positive line bundles; Remmert reduction; pseudoconvex space; pseudoconcave space; embedding; compactification},
language = {eng},
number = {2},
pages = {373-396},
publisher = {Association des Annales de l’institut Fourier},
title = {On the embedding and compactification of $q$-complete manifolds},
url = {http://eudml.org/doc/10150},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Chiose, Ionuţ
TI - On the embedding and compactification of $q$-complete manifolds
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 2
SP - 373
EP - 396
AB - We characterize intrinsically two classes of manifolds that can be properly embedded into spaces of the form $\mathbb{ P}^N\setminus \mathbb{ P}^{N-q}$. The first theorem is a compactification theorem for pseudoconcave manifolds that can be realized as $\overline{X}\setminus (\overline{X}\cap \mathbb{ P}^{N-q})$ where $\overline{X}\subset \mathbb{ P}^N$ is a projective variety. The second theorem is an embedding theorem for holomorphically convex manifolds into $\mathbb{ P}^1\times \mathbb{ C}^N$.
LA - eng
KW - Pseudoconvex and pseudoconcave spaces; embeddings and compactifications; positive line bundles; Remmert reduction; pseudoconvex space; pseudoconcave space; embedding; compactification
UR - http://eudml.org/doc/10150
ER -

References

top
  1. A. Andreotti, Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves, Bull. Soc. Math. France 91 (1963), 1-38 Zbl0113.06403
  2. A. Andreotti, G. Tomassini, Some remarks on pseudoconcave manifolds, Essays on Topology and Related Topics (1970), Springer, New York Zbl0192.58102
  3. D. Barlet, A. Silva, Convexité holomorphe intermédiaire, Math. Ann. 296 (1993), 649-665 Zbl0788.32007
  4. J.-P. Demailly, Estimations L 2 pour l’opérateur ¯ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), 457-511 Zbl0507.32021
  5. J.-P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. France, N. S. 19 (1985) Zbl0579.32012
  6. P. Dingoyan, Un phénomène de Hartogs dans les variétés projectives, Math. Z 232 (1999), 217-240 Zbl0941.32011
  7. F.R. Harvey, H.B. Lawson, On boundaries of complex analytic varieties. II, Ann. Math 106 (1977), 213-238 Zbl0361.32010
  8. L. Hörmander, An introduction to complex analysis in several variables, (1966), D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London Zbl0138.06203
  9. N. Mok, An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties, Bull. Soc. Math. France 112 (1984), 197-250 Zbl0536.53062
  10. A. Nadel, On complex manifolds which can be compactified by adding finitely many points, Invent. Math. 101 (1990), 173-189 Zbl0712.32019
  11. T. Ohsawa, Hodge spectral sequence and symmetry on compact Kähler spaces, Publ. Res. Inst. Math. Sci. 23 (1987), 613-625 Zbl0635.32008
  12. S. Takayama, Adjoint linear series on weakly 1 -complete Kähler manifolds. I. Global projective embedding, Math. Ann. 311 (1998), 501-531 Zbl0912.32021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.