An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties
Bulletin de la Société Mathématique de France (1984)
- Volume: 112, page 197-258
- ISSN: 0037-9484
Access Full Article
topHow to cite
topMok, Ngaiming. "An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties." Bulletin de la Société Mathématique de France 112 (1984): 197-258. <http://eudml.org/doc/87459>.
@article{Mok1984,
author = {Mok, Ngaiming},
journal = {Bulletin de la Société Mathématique de France},
keywords = {positive curvature; Schwarz lemmas; Siegel's theorem; -estimates; non-compact Kähler manifolds; affine algebraic varieties; Stein manifolds},
language = {eng},
pages = {197-258},
publisher = {Société mathématique de France},
title = {An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties},
url = {http://eudml.org/doc/87459},
volume = {112},
year = {1984},
}
TY - JOUR
AU - Mok, Ngaiming
TI - An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties
JO - Bulletin de la Société Mathématique de France
PY - 1984
PB - Société mathématique de France
VL - 112
SP - 197
EP - 258
LA - eng
KW - positive curvature; Schwarz lemmas; Siegel's theorem; -estimates; non-compact Kähler manifolds; affine algebraic varieties; Stein manifolds
UR - http://eudml.org/doc/87459
ER -
References
top- [1] ANDREOTTI (A.) and VESENTINI (E.). — Carleman estimates for the Laplace-Beltrami operator on complex manifolds, Publ. Math. Inst. Hautes Études Sci. 25 (1965), 81-130. Zbl0138.06604MR30 #5333
- [2] BISHOP (R. L.) and GOLDBERG (S. I.). — On the second cohomology group of a Kähler manifold of positive curvature, Proc. Amer. Math. Soc. 16 (19765), 119-122. Zbl0125.39403MR30 #2441
- [3] BOMBIERI (E.) and GIUSTI (E.). — Harnack's inequality for elliptic differential equations on minimal surfaces, Inv. Math. 15 (1972), 24-46. Zbl0227.35021MR46 #8057
- [4] CHEEGER (J.) and EBIN (D. G.). — Comparison Theorems in Riemannian Geometry, North-Holland Publishing Co., Amsterdam, 1975. Zbl0309.53035MR56 #16538
- [5] CHEEGER (J.) and GROMOLL (D.). — The splitting theorem for manifolds of non-negative Ricci curvature, J. Diff. Geom., 6, (1971), 119-128. Zbl0223.53033MR46 #2597
- [6] CHEEGER (J.) and GROMOLL (D.). — On the structure of complete manifolds of non-negative curvature, Ann. of Math. 96 (1972), 413-443. Zbl0246.53049MR46 #8121
- [7] CHENG (S.-Y.) and YAU (S.-T.). — Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), 333-354. Zbl0312.53031MR52 #6608
- [8] CROKE (C.). — Some isoperimetric inequalities and consequences, Ann. Scient. Ec. Norm. Sup. 13 (1980). Zbl0465.53032MR83d:58068
- [9] GREENE (R. E.) and WU (H.). — Analysis on non-compact Kähler manifolds, Proc. Symp. Pure Math., Vol. 30, Part II, Amer. Math. Soc. (1977). Zbl0383.32005
- [10] GREENE (R. E.) and WU (H.). — Function Theory on Manifolds which Possess a Pole, Lecture Notes in Math., Vol. 669, Springer-Verlag, Berlin-Heidelberg-New York, 1979. Zbl0414.53043MR81a:53002
- [11] GOODMAN (J. E.). — Affine open subsets of algebraic varieties and ample divisors, Ann. of Math. 89 (1969), 160-183. Zbl0159.50504MR39 #4170
- [12] HÖRMANDER (L.). — L2-estimates and existence theorems for the ∂-operator, Acta. Math. 113 (1965), 89-152. Zbl0158.11002
- [13] LELONG (P.). — Fonctions entières (n variables) et fonctions pluri-sousharmoniques d'ordre fini dans Cn, J. Anal. Math. 12 (1964), 365-407. Zbl0126.29602MR29 #3668
- [14] LELONG (P.). — Sur la structure des courants positifs fermés, Séminaire Pierre Lelong (Analyse), Année 1975/1976, Lectures Notes in Math., Vol. 578, pp. 136-156, Springer-Verlag, Berlin-Heidelberg-New York. Zbl0354.32014MR58 #6328
- [15] MOK (N.). — Courbure bisectionnelle positive et variétés algébriques affines, Comptes Rendus, Acad. Sc. Paris, Vol. 296, Série A (1983), 473-476. Zbl0579.53043MR85a:32015
- [16] MOK (N.). — Complete non-compact Kähler manifolds of positive curvature, Complex Analysis of Several Variables, Proc. of Sym. in Pure Math., Vol. 41, Amer. Math. Soc., 1984. Zbl0537.53054MR85i:53071
- [17] MOK (N.), SIU (Y.-T.) and YAU (S.-T.). — The Poincaré-Lelong equation on complete Kähler manifolds, Comp. Math., Vol. 44, Fasc. 1-3 (1981), 183-218. Zbl0531.32007MR84g:32011
- [18] MOSER (J.). — On Harnack's theorem for elliptic differential equations, Comm. Pure and Appl. Math., 14 (1961), 577-591. Zbl0111.09302MR28 #2356
- [19] RAMANUJAM (C. P.). — A topological characterization of the affine plane as an algebraic variety, Ann. of Math. 94 (1971), 69-88. Zbl0218.14021MR44 #4010
- [20] SERRE (J.-P.). — Faisceaux algébriques cohérents, Ann. of Math. 61 (1955), 197-278. Zbl0067.16201MR16,953c
- [21] SERRE (J.-P.). — Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier 6 (1956), 1-42. Zbl0075.30401MR18,511a
- [22] SIU (Y.-T.). — Pseudoconvexity and the problem of Levi, Bull. Amer. Math. Soc. 84 (1978), 481-512. Zbl0423.32008MR57 #16648
- [23] SIU (Y.-T.). — Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math. 27 (1874), 53-156. Zbl0289.32003MR50 #5003
- [24] SIU (Y.-T.) and YAU (S.-T.). — Complete Kähler manifolds with non-positive curvature of faster than quadratic decay, Ann. Math. 105 (1977), 225-264. Zbl0358.32006MR55 #10719
- [25] SKODA (H.). — Application des tachniques L2 à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids, Ann. Scient. Ec. Norm. Sup. 5 (1972), 548-580. Zbl0254.32017MR48 #11571
- [26] STAMPACHIA (G.). — Equations elliptiques du second ordre à coefficients discontinus, Séminaire de Mathématiques Supérieures 16, 1966. Zbl0151.15501MR40 #4603
- [27] THIE (P.). — The Lelong number in a point of a complex analytic set, Math. Ann. 172 (1967), 269-312. Zbl0158.32804MR35 #5661
- [28] YAU (S.-T.). — Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. Zbl0291.31002MR55 #4042
- [29] BLANC (C.) and FIALA (F.). — Le type d'une surface et sa courbure totale, Comment. Math. Helv. 14 (1941-1942), 230-233. Zbl0026.01501MR4,53d
- [30] GROMOLL (D.) and MEYER (W.). — On complete open manifolds of non-negative curvature, Ann. of Math. 90 (1969), 75-90. Zbl0191.19904MR40 #854
- [31] POOR (W.). — Some results on nonnegatively curved manifolds, J. Diff. Geom. 9 (1974), 583-600. Zbl0292.53037MR51 #11351
- [32] WU (H.). — An elemetary method in the study of nonnegative curvature, Acta Math. 142 (1979), 57-78. Zbl0403.53022MR80c:53054
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.