An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties

Ngaiming Mok

Bulletin de la Société Mathématique de France (1984)

  • Volume: 112, page 197-258
  • ISSN: 0037-9484

How to cite

top

Mok, Ngaiming. "An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties." Bulletin de la Société Mathématique de France 112 (1984): 197-258. <http://eudml.org/doc/87459>.

@article{Mok1984,
author = {Mok, Ngaiming},
journal = {Bulletin de la Société Mathématique de France},
keywords = {positive curvature; Schwarz lemmas; Siegel's theorem; -estimates; non-compact Kähler manifolds; affine algebraic varieties; Stein manifolds},
language = {eng},
pages = {197-258},
publisher = {Société mathématique de France},
title = {An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties},
url = {http://eudml.org/doc/87459},
volume = {112},
year = {1984},
}

TY - JOUR
AU - Mok, Ngaiming
TI - An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties
JO - Bulletin de la Société Mathématique de France
PY - 1984
PB - Société mathématique de France
VL - 112
SP - 197
EP - 258
LA - eng
KW - positive curvature; Schwarz lemmas; Siegel's theorem; -estimates; non-compact Kähler manifolds; affine algebraic varieties; Stein manifolds
UR - http://eudml.org/doc/87459
ER -

References

top
  1. [1] ANDREOTTI (A.) and VESENTINI (E.). — Carleman estimates for the Laplace-Beltrami operator on complex manifolds, Publ. Math. Inst. Hautes Études Sci. 25 (1965), 81-130. Zbl0138.06604MR30 #5333
  2. [2] BISHOP (R. L.) and GOLDBERG (S. I.). — On the second cohomology group of a Kähler manifold of positive curvature, Proc. Amer. Math. Soc. 16 (19765), 119-122. Zbl0125.39403MR30 #2441
  3. [3] BOMBIERI (E.) and GIUSTI (E.). — Harnack's inequality for elliptic differential equations on minimal surfaces, Inv. Math. 15 (1972), 24-46. Zbl0227.35021MR46 #8057
  4. [4] CHEEGER (J.) and EBIN (D. G.). — Comparison Theorems in Riemannian Geometry, North-Holland Publishing Co., Amsterdam, 1975. Zbl0309.53035MR56 #16538
  5. [5] CHEEGER (J.) and GROMOLL (D.). — The splitting theorem for manifolds of non-negative Ricci curvature, J. Diff. Geom., 6, (1971), 119-128. Zbl0223.53033MR46 #2597
  6. [6] CHEEGER (J.) and GROMOLL (D.). — On the structure of complete manifolds of non-negative curvature, Ann. of Math. 96 (1972), 413-443. Zbl0246.53049MR46 #8121
  7. [7] CHENG (S.-Y.) and YAU (S.-T.). — Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), 333-354. Zbl0312.53031MR52 #6608
  8. [8] CROKE (C.). — Some isoperimetric inequalities and consequences, Ann. Scient. Ec. Norm. Sup. 13 (1980). Zbl0465.53032MR83d:58068
  9. [9] GREENE (R. E.) and WU (H.). — Analysis on non-compact Kähler manifolds, Proc. Symp. Pure Math., Vol. 30, Part II, Amer. Math. Soc. (1977). Zbl0383.32005
  10. [10] GREENE (R. E.) and WU (H.). — Function Theory on Manifolds which Possess a Pole, Lecture Notes in Math., Vol. 669, Springer-Verlag, Berlin-Heidelberg-New York, 1979. Zbl0414.53043MR81a:53002
  11. [11] GOODMAN (J. E.). — Affine open subsets of algebraic varieties and ample divisors, Ann. of Math. 89 (1969), 160-183. Zbl0159.50504MR39 #4170
  12. [12] HÖRMANDER (L.). — L2-estimates and existence theorems for the ∂-operator, Acta. Math. 113 (1965), 89-152. Zbl0158.11002
  13. [13] LELONG (P.). — Fonctions entières (n variables) et fonctions pluri-sousharmoniques d'ordre fini dans Cn, J. Anal. Math. 12 (1964), 365-407. Zbl0126.29602MR29 #3668
  14. [14] LELONG (P.). — Sur la structure des courants positifs fermés, Séminaire Pierre Lelong (Analyse), Année 1975/1976, Lectures Notes in Math., Vol. 578, pp. 136-156, Springer-Verlag, Berlin-Heidelberg-New York. Zbl0354.32014MR58 #6328
  15. [15] MOK (N.). — Courbure bisectionnelle positive et variétés algébriques affines, Comptes Rendus, Acad. Sc. Paris, Vol. 296, Série A (1983), 473-476. Zbl0579.53043MR85a:32015
  16. [16] MOK (N.). — Complete non-compact Kähler manifolds of positive curvature, Complex Analysis of Several Variables, Proc. of Sym. in Pure Math., Vol. 41, Amer. Math. Soc., 1984. Zbl0537.53054MR85i:53071
  17. [17] MOK (N.), SIU (Y.-T.) and YAU (S.-T.). — The Poincaré-Lelong equation on complete Kähler manifolds, Comp. Math., Vol. 44, Fasc. 1-3 (1981), 183-218. Zbl0531.32007MR84g:32011
  18. [18] MOSER (J.). — On Harnack's theorem for elliptic differential equations, Comm. Pure and Appl. Math., 14 (1961), 577-591. Zbl0111.09302MR28 #2356
  19. [19] RAMANUJAM (C. P.). — A topological characterization of the affine plane as an algebraic variety, Ann. of Math. 94 (1971), 69-88. Zbl0218.14021MR44 #4010
  20. [20] SERRE (J.-P.). — Faisceaux algébriques cohérents, Ann. of Math. 61 (1955), 197-278. Zbl0067.16201MR16,953c
  21. [21] SERRE (J.-P.). — Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier 6 (1956), 1-42. Zbl0075.30401MR18,511a
  22. [22] SIU (Y.-T.). — Pseudoconvexity and the problem of Levi, Bull. Amer. Math. Soc. 84 (1978), 481-512. Zbl0423.32008MR57 #16648
  23. [23] SIU (Y.-T.). — Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math. 27 (1874), 53-156. Zbl0289.32003MR50 #5003
  24. [24] SIU (Y.-T.) and YAU (S.-T.). — Complete Kähler manifolds with non-positive curvature of faster than quadratic decay, Ann. Math. 105 (1977), 225-264. Zbl0358.32006MR55 #10719
  25. [25] SKODA (H.). — Application des tachniques L2 à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids, Ann. Scient. Ec. Norm. Sup. 5 (1972), 548-580. Zbl0254.32017MR48 #11571
  26. [26] STAMPACHIA (G.). — Equations elliptiques du second ordre à coefficients discontinus, Séminaire de Mathématiques Supérieures 16, 1966. Zbl0151.15501MR40 #4603
  27. [27] THIE (P.). — The Lelong number in a point of a complex analytic set, Math. Ann. 172 (1967), 269-312. Zbl0158.32804MR35 #5661
  28. [28] YAU (S.-T.). — Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. Zbl0291.31002MR55 #4042
  29. [29] BLANC (C.) and FIALA (F.). — Le type d'une surface et sa courbure totale, Comment. Math. Helv. 14 (1941-1942), 230-233. Zbl0026.01501MR4,53d
  30. [30] GROMOLL (D.) and MEYER (W.). — On complete open manifolds of non-negative curvature, Ann. of Math. 90 (1969), 75-90. Zbl0191.19904MR40 #854
  31. [31] POOR (W.). — Some results on nonnegatively curved manifolds, J. Diff. Geom. 9 (1974), 583-600. Zbl0292.53037MR51 #11351
  32. [32] WU (H.). — An elemetary method in the study of nonnegative curvature, Acta Math. 142 (1979), 57-78. Zbl0403.53022MR80c:53054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.