The von Neumann algebras generated by t -gaussians

Éric Ricard[1]

  • [1] Laboratoire de Mathématiques Université de Franche-Comté 25030 Besançon, cedex (France)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 2, page 475-498
  • ISSN: 0373-0956

Abstract

top
We study the t -deformation of gaussian von Neumann algebras. They appear as example in the theories of Interacting Fock spaces and conditionally free products. When the number of generators is fixed, it is proved that if t is sufficiently close to 1 , then these algebras do not depend on t . In the same way, the notion of conditionally free von Neumann algebras often coincides with freeness.

How to cite

top

Ricard, Éric. "The von Neumann algebras generated by $t$-gaussians." Annales de l’institut Fourier 56.2 (2006): 475-498. <http://eudml.org/doc/10154>.

@article{Ricard2006,
abstract = {We study the $t$-deformation of gaussian von Neumann algebras. They appear as example in the theories of Interacting Fock spaces and conditionally free products. When the number of generators is fixed, it is proved that if $t$ is sufficiently close to $1$, then these algebras do not depend on $t$. In the same way, the notion of conditionally free von Neumann algebras often coincides with freeness.},
affiliation = {Laboratoire de Mathématiques Université de Franche-Comté 25030 Besançon, cedex (France)},
author = {Ricard, Éric},
journal = {Annales de l’institut Fourier},
keywords = {Conditionnal free product; interacting Fock space; t-Gaussians; generated von Neumann algebra; t-deformed Fock space; orthogonal polynomials; conditional free product; R and G transforms},
language = {eng},
number = {2},
pages = {475-498},
publisher = {Association des Annales de l’institut Fourier},
title = {The von Neumann algebras generated by $t$-gaussians},
url = {http://eudml.org/doc/10154},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Ricard, Éric
TI - The von Neumann algebras generated by $t$-gaussians
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 2
SP - 475
EP - 498
AB - We study the $t$-deformation of gaussian von Neumann algebras. They appear as example in the theories of Interacting Fock spaces and conditionally free products. When the number of generators is fixed, it is proved that if $t$ is sufficiently close to $1$, then these algebras do not depend on $t$. In the same way, the notion of conditionally free von Neumann algebras often coincides with freeness.
LA - eng
KW - Conditionnal free product; interacting Fock space; t-Gaussians; generated von Neumann algebra; t-deformed Fock space; orthogonal polynomials; conditional free product; R and G transforms
UR - http://eudml.org/doc/10154
ER -

References

top
  1. L. Accardi, M. Bożejko, Interacting Fock spaces and Gaussianization of probability measures, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4 (1998), 663-670 Zbl0922.60013MR1665281
  2. F. Boca, Free products of completely positive maps and spectral sets, J. Funct. Anal. 97 (1991), 251-263 Zbl0741.46024MR1111181
  3. F. Boca, Completely positive maps on amalgamated product C * -algebras, Math. Scand. 72 (1993), 212-222 Zbl0799.46066MR1241816
  4. M. Bożejko, G. Fendler, A note on certain partial sum operators Zbl1109.46051
  5. M. Bożejko, B. Kümmerer, R. Speicher, q -Gaussian processes: non-commutative and classical aspects, Comm. Math. Phys. 185 (1997), 129-154 Zbl0873.60087MR1463036
  6. M. Bożejko, M. Leinert, R. Speicher, Convolution and limit theorems for conditionally free random variables, Pacific J. Math. 175 (1996), 357-388 Zbl0874.60010MR1432836
  7. M. Bożejko, R. Speicher, Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces, Math. Ann. 300 (1994), 97-120 Zbl0819.20043MR1289833
  8. M. Bożejko, J. Wysoczański, Remarks on t -transformations of measures and convolutions, Ann. Inst. H. Poincaré Probab. Statist. 37 (2001), 737-761 Zbl0995.60004MR1863276
  9. A. Buchholz, L -Khintchine-Bonami inequality in free probability, Quantum probability (Gdańsk, 1997) 43 (1998), 105-109, Polish Acad. Sci., Warsaw Zbl0948.47007MR1649713
  10. K. J. Dykema, Faithfulness of free product states, J. Funct. Anal. 154 (1998), 323-329 Zbl0927.46034MR1612705
  11. U. Haagerup, An example of a nonnuclear C * -algebra, which has the metric approximation property, Invent. Math. 50 (1978/79), 279-293 Zbl0408.46046MR520930
  12. W. Młotkowski, Operator-valued version of conditionally free product, Studia Math. 153 (2002), 13-30 Zbl1036.46044MR1948925
  13. A. Nou, Non injectivity of the q -deformed von Neumann algebra, Math. Ann. 330 (2004), 17-38 Zbl1060.46051MR2091676
  14. É. Ricard, Factoriality of q -Gaussian von Neumann Algebras, Comm. Math. Phys. 257 (2005), 659-665 Zbl1079.81038MR2164947
  15. D. Shlyakhtenko, Some estimates for non-microstates free entropy dimension with applications to q -semicircular families, Int. Math. Res. Not. 51 (2004), 2757-2772 Zbl1075.46055MR2130608
  16. D. V. Voiculescu, K. J. Dykema, A. Nica, Free random variables, 1 (1992), American Mathematical Society, Providence, RI Zbl0795.46049MR1217253
  17. Ł. Wojakowski, Probabilistyka interpolujaca pomiedzy wolna boolowska, (2004) 
  18. J. Wysoczański, The von Neumann algebra associated with t -free non-commutative gaussian random variables Zbl1114.47039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.