L -Khintchine-Bonami inequality in free probability

Artur Buchholz

Banach Center Publications (1998)

  • Volume: 43, Issue: 1, page 105-109
  • ISSN: 0137-6934

Abstract

top
We prove the norm estimates for operator-valued functions on free groups supported on the words with fixed length ( f = | w | = l a w λ ( w ) ). Next, we replace the translations by the free generators with a free family of operators and prove inequalities of the same type.

How to cite

top

Buchholz, Artur. "$L_∞$-Khintchine-Bonami inequality in free probability." Banach Center Publications 43.1 (1998): 105-109. <http://eudml.org/doc/208829>.

@article{Buchholz1998,
abstract = {We prove the norm estimates for operator-valued functions on free groups supported on the words with fixed length ($f = ∑_\{|w| = l\} a_\{w\} ⊗ λ(w)$). Next, we replace the translations by the free generators with a free family of operators and prove inequalities of the same type.},
author = {Buchholz, Artur},
journal = {Banach Center Publications},
keywords = {Khintchine inequality; Rademacher functions; -Khintchine-Bonami inequalities; operator-valued functions},
language = {eng},
number = {1},
pages = {105-109},
title = {$L_∞$-Khintchine-Bonami inequality in free probability},
url = {http://eudml.org/doc/208829},
volume = {43},
year = {1998},
}

TY - JOUR
AU - Buchholz, Artur
TI - $L_∞$-Khintchine-Bonami inequality in free probability
JO - Banach Center Publications
PY - 1998
VL - 43
IS - 1
SP - 105
EP - 109
AB - We prove the norm estimates for operator-valued functions on free groups supported on the words with fixed length ($f = ∑_{|w| = l} a_{w} ⊗ λ(w)$). Next, we replace the translations by the free generators with a free family of operators and prove inequalities of the same type.
LA - eng
KW - Khintchine inequality; Rademacher functions; -Khintchine-Bonami inequalities; operator-valued functions
UR - http://eudml.org/doc/208829
ER -

References

top
  1. [Bo1] M. Bożejko, On Λ(p) sets with minimal constant in discrete noncommutative groups, Proc. Amer. Math. Soc. 51(2) (1975), 407-412. Zbl0321.43004
  2. [Bo2] M. Bożejko, A q-deformed probability, Nelson's inequality and central limit theorems, Non-linear fields, classical, random, semiclassical, (eds. P. Garbaczewski and Z. Popowicz), World Scientific, Singapore (1991), 312-335. 
  3. [BSp] M. Bożejko and R. Speicher, Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces, Math. Annalen 300 (1994), 97-120. Zbl0819.20043
  4. [Bn] A. Bonami, Étude des coefficients de Fourier des fonctions de L p ( G ) , Ann. Inst. Fourier 20,2 (1970), 335-402. Zbl0195.42501
  5. [Bu] A. Buchholz, Norm of convolution by operator-valued functions on free groups, To appear in Proc. Amer. Math. Soc. 
  6. [H1] U. Haagerup, Les meilleures constantes de l'inégalité de Khintchine, C. R. Acad. Soc. Paris 286 (1978), A259-A262. Zbl0377.46013
  7. [H2] U. Haagerup, An example of a non-nuclear C*-algebra which has the metric approximation property, Invent. Math. 50 (1979), 279-293. Zbl0408.46046
  8. [HP] U. Haagerup and G. Pisier, Bounded linear operators between C*-algebras, Duke Math. J. 71 (1993), 889-925. Zbl0803.46064
  9. [L] M. Leinert, Multiplikatoren diskreter Gruppen, Doctoral Dissertation, University of Heidelberg, 1972. 
  10. [LPP] F. Lust-Piquard and G. Pisier, Non commutative Khintchine and Paley inequalities, Ark. Mat. 29 (1991), 241-260. Zbl0755.47029
  11. [V] D. Voiculescu, Symmetries of some reduced free product C*-algebras, in: Operator Algebras and Ergodic Theory, Lecture Notes in Math. 1132 (1985), 556-588. 
  12. [VDN] D. Voiculescu, K. Dykema and A. Nica, Free Random Variables, AMS (1992). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.