The Poisson boundary of random rational affinities

Sara Brofferio[1]

  • [1] Technische Universität Graz Institut für Mathematik C Steyergasse 30 A-8010 Graz (Austria)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 2, page 499-515
  • ISSN: 0373-0956

Abstract

top
We prove that in order to describe the Poisson boundary of rational affinities, it is necessary and sufficient to consider the action on real and all p -adic fileds.

How to cite

top

Brofferio, Sara. "The Poisson boundary of random rational affinities." Annales de l’institut Fourier 56.2 (2006): 499-515. <http://eudml.org/doc/10155>.

@article{Brofferio2006,
abstract = {We prove that in order to describe the Poisson boundary of rational affinities, it is necessary and sufficient to consider the action on real and all $p$-adic fileds.},
affiliation = {Technische Universität Graz Institut für Mathematik C Steyergasse 30 A-8010 Graz (Austria)},
author = {Brofferio, Sara},
journal = {Annales de l’institut Fourier},
keywords = {Poisson boundary; random walks; affine group; rational numbers; $p$-adic numbers},
language = {eng},
number = {2},
pages = {499-515},
publisher = {Association des Annales de l’institut Fourier},
title = {The Poisson boundary of random rational affinities},
url = {http://eudml.org/doc/10155},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Brofferio, Sara
TI - The Poisson boundary of random rational affinities
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 2
SP - 499
EP - 515
AB - We prove that in order to describe the Poisson boundary of rational affinities, it is necessary and sufficient to consider the action on real and all $p$-adic fileds.
LA - eng
KW - Poisson boundary; random walks; affine group; rational numbers; $p$-adic numbers
UR - http://eudml.org/doc/10155
ER -

References

top
  1. Martine Babillot, Philippe Bougerol, Laure Elie, The random difference equation X n = A n X n - 1 + B n in the critical case, Ann. Probab. 25 (1997), 478-493 Zbl0873.60045MR1428518
  2. Philippe Bougerol, Nico Picard, Strict stationarity of generalized autoregressive processes, Ann. Probab. 20 (1992), 1714-1730 Zbl0763.60015MR1188039
  3. Sara Brofferio, Poisson boundary for finitely generated groups of rational affinities Zbl1087.60011
  4. Sara Brofferio, Speed of locally contractive stochastic systems, Ann. Probab. 31 (2003), 2040-2067 Zbl1046.60067MR2016611
  5. D. I. Cartwright, V. A. Kaĭmanovich, W. Woess, Random walks on the affine group of local fields and of homogeneous trees, Ann. Inst. Fourier (Grenoble) 44 (1994), 1243-1288 Zbl0809.60010MR1306556
  6. J. W. S. Cassels, Global fields, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965) (1967), 42-84, Thompson, Washington, D.C. MR222054
  7. Y. Derriennic, Entropie, théorèmes limite et marches aléatoires, Probability measures on groups, VIII (Oberwolfach, 1985) 1210 (1986), 241-284, Springer, Berlin Zbl0612.60005MR879010
  8. Yves Derriennic, Quelques applications du théorème ergodique sous-additif, Conference on Random Walks (Kleebach, 1979) (French) 74 (1980), 183-201, 4, Soc. Math. France, Paris Zbl0446.60059MR588163
  9. Laure Élie, Noyaux potentiels associés aux marches aléatoires sur les espaces homogènes. Quelques exemples clefs dont le groupe affine, Théorie du potentiel (Orsay, 1983) 1096 (1984), 223-260, Springer, Berlin Zbl0571.60076MR890360
  10. Harry Furstenberg, Boundary theory and stochastic processes on homogeneous spaces, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) (1973), 193-229, Amer. Math. Soc., Providence, R.I. Zbl0289.22011MR352328
  11. V. A. Kaĭmanovich, A. M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Probab. 11 (1983), 457-490 Zbl0823.60006MR1178986
  12. Vadim A. Kaimanovich, Poisson boundaries of random walks on discrete solvable groups, Probability measures on groups, X (Oberwolfach, 1990) (1991), 205-238, Plenum, New York Zbl0984.60088MR1815698
  13. Vadim A. Kaimanovich, The Poisson formula for groups with hyperbolic properties, Ann. of Math. (2) 152 (2000), 659-692 Zbl0641.60009MR704539
  14. Harry Kesten, Random difference equations and renewal theory for products of random matrices, Acta Math. 131 (1973), 207-248 Zbl0291.60029MR440724
  15. Serge Lang, Introduction to diophantine approximations, (1966), Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. Zbl0144.04005MR209227
  16. Wim Vervaat, On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables, Adv. in Appl. Probab. 11 (1979), 750-783 Zbl0417.60073MR544194

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.