Poisson boundary of triangular matrices in a number field

Bruno Schapira[1]

  • [1] Université Paris-Sud Département de Mathématiques Bât. 425 91405 Orsay Cedex (France)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 2, page 575-593
  • ISSN: 0373-0956

Abstract

top
The aim of this note is to describe the Poisson boundary of the group of invertible triangular matrices with coefficients in a number field. It generalizes to any dimension and to any number field a result of Brofferio concerning the Poisson boundary of random rational affinities.

How to cite

top

Schapira, Bruno. "Poisson boundary of triangular matrices in a number field." Annales de l’institut Fourier 59.2 (2009): 575-593. <http://eudml.org/doc/10405>.

@article{Schapira2009,
abstract = {The aim of this note is to describe the Poisson boundary of the group of invertible triangular matrices with coefficients in a number field. It generalizes to any dimension and to any number field a result of Brofferio concerning the Poisson boundary of random rational affinities.},
affiliation = {Université Paris-Sud Département de Mathématiques Bât. 425 91405 Orsay Cedex (France)},
author = {Schapira, Bruno},
journal = {Annales de l’institut Fourier},
keywords = {Random walks; Poisson boundary; triangular matrices; number field; Bruhat decomposition; random walks},
language = {eng},
number = {2},
pages = {575-593},
publisher = {Association des Annales de l’institut Fourier},
title = {Poisson boundary of triangular matrices in a number field},
url = {http://eudml.org/doc/10405},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Schapira, Bruno
TI - Poisson boundary of triangular matrices in a number field
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 2
SP - 575
EP - 593
AB - The aim of this note is to describe the Poisson boundary of the group of invertible triangular matrices with coefficients in a number field. It generalizes to any dimension and to any number field a result of Brofferio concerning the Poisson boundary of random rational affinities.
LA - eng
KW - Random walks; Poisson boundary; triangular matrices; number field; Bruhat decomposition; random walks
UR - http://eudml.org/doc/10405
ER -

References

top
  1. U. Bader, Y. Shalom, Factor and normal subgroup theorems for lattices in products of groups, Invent. Math. 163 (2006), 415-454 Zbl1085.22005MR2207022
  2. S. Brofferio, The Poisson Boundary of random rational affinities, Ann. Inst. Fourier 56 (2006), 499-515 Zbl1087.60011MR2226025
  3. D. I. Cartwright, V. A. Kaimanovich, W. Woess, Random walks on the affine group of local fields and of homogeneous trees, Ann. Inst. Fourier 44 (1994), 1243-1288 Zbl0809.60010MR1306556
  4. Y. Derriennic, Entropie, théorèmes limite et marches aléatoires, Probability measures on groups VIII 1210 (1986), 241-284, Springer, Berlin Zbl0612.60005MR879010
  5. L. Élie, Noyaux potentiels associés aux marches aléatoires sur les espaces homogènes. Quelques exemples clefs dont le groupe affine, Théorie du potentiel 1096 (1984), 223-260 Zbl0571.60076MR890360
  6. A. Furman, Random walks on groups and random transformations, Handbook of dynamical systems 1A (2002), 931-1014, Amsterdam, North-Holland Zbl1053.60045MR1928529
  7. H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. 77 (1963), 335-386 Zbl0192.12704MR146298
  8. H. Furstenberg, Boundary theory and stochastic processes on homogeneous spaces, Harmonic analysis on homogeneous spaces (1973), 193-229, Amer. Math. Soc., Providence, R.I. Zbl0289.22011MR352328
  9. Y. Guivarc’h, A. Raugi, Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahrsch. Verw. Gebiete 69 (1985), 187-242 Zbl0558.60009MR779457
  10. V. A. Kaimanovich, The Poisson formula for groups with hyperbolic properties, Ann. of Math. 152 (2000), 659-692 Zbl0984.60088MR1815698
  11. S. Lang, Introduction to diophantine approximations, (1966), Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. Zbl0144.04005MR209227
  12. F. Ledrappier, Poisson boundaries of discrete groups of matrices, Israel J. Math. 50 (1985), 319-336 Zbl0574.60012MR800190
  13. A. Raugi, Fonctions harmoniques sur les groupes localement compacts à base dénombrable, Bull. Soc. Math. France Mém. (1977), 5-118 Zbl0389.60003MR517392
  14. P. Samuel, Théorie algébrique des nombres, (1967), Hermann, Paris Zbl0146.06402MR215808
  15. J.-P. Serre, Corps locaux, (1968), Hermann, Paris Zbl0423.12017MR354618
  16. G. Warner, Harmonic analysis on semi-simple Lie groups. I, 188 (1972), Springer-Verlag, New York-Heidelberg Zbl0265.22020MR498999
  17. A. Weil, Basic number theory, 144 (1974), Springer-Verlag, New York-Berlin Zbl0326.12001MR427267

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.