Cohomology of Drinfeld symmetric spaces and Harmonic cochains
- [1] Universität Münster Mathematisches Institut Einsteinstr. 62 48149 Münster (Allemagne)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 3, page 561-597
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAït Amrane, Yacine. "Cohomology of Drinfeld symmetric spaces and Harmonic cochains." Annales de l’institut Fourier 56.3 (2006): 561-597. <http://eudml.org/doc/10158>.
@article{AïtAmrane2006,
abstract = {Let $K$ be a non-archimedean local field. This paper gives an explicit isomorphism between the dual of the special representation of $GL_\{n+1\}(K)$ and the space of harmonic cochains defined on the Bruhat-Tits building of $GL_\{n+1\}(K)$, in the sense of E. de Shalit [11]. We deduce, applying the results of a paper of P. Schneider and U. Stuhler [9], that there exists a $GL_\{n+1\}(K)$-equivariant isomorphism between the cohomology group of the Drinfeld symmetric space and the space of harmonic cochains.},
affiliation = {Universität Münster Mathematisches Institut Einsteinstr. 62 48149 Münster (Allemagne)},
author = {Aït Amrane, Yacine},
journal = {Annales de l’institut Fourier},
keywords = {Drinfeld symmetric spaces; cohomology; Bruhat-Tits buildings; harmonic cochains; special representations},
language = {eng},
number = {3},
pages = {561-597},
publisher = {Association des Annales de l’institut Fourier},
title = {Cohomology of Drinfeld symmetric spaces and Harmonic cochains},
url = {http://eudml.org/doc/10158},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Aït Amrane, Yacine
TI - Cohomology of Drinfeld symmetric spaces and Harmonic cochains
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 3
SP - 561
EP - 597
AB - Let $K$ be a non-archimedean local field. This paper gives an explicit isomorphism between the dual of the special representation of $GL_{n+1}(K)$ and the space of harmonic cochains defined on the Bruhat-Tits building of $GL_{n+1}(K)$, in the sense of E. de Shalit [11]. We deduce, applying the results of a paper of P. Schneider and U. Stuhler [9], that there exists a $GL_{n+1}(K)$-equivariant isomorphism between the cohomology group of the Drinfeld symmetric space and the space of harmonic cochains.
LA - eng
KW - Drinfeld symmetric spaces; cohomology; Bruhat-Tits buildings; harmonic cochains; special representations
UR - http://eudml.org/doc/10158
ER -
References
top- Y. Aït Amrane, Cohomologie des espaces symétriques de Drinfeld, cocycles harmoniques et formes automorphes, (2003)
- Y. Aït Amrane, Cohomologie des espaces symétriques de Drinfeld et cocycles harmoniques, C. R. Acad. Sci. Paris, Ser. I 338 (2004), 191-196 Zbl1052.14023MR2038322
- A. Borel, J.-P. Serre, Cohomologie d’immeubles et de groupes -arithmétiques, Topology 15 (1976), 211-232 Zbl0338.20055MR447474
- N. Bourbaki, Groupes et algèbres de Lie, (1981), Masson, Paris Zbl0483.22001MR647314
- K. S. Brown, Buildings, (1989), Springer-Verlag, New York Zbl0715.20017MR969123
- V. G. Drinfeld, Elliptic Modules, Math. USSR Sbornik 23 (1974), 561-592 Zbl0321.14014
- P. Garrett, Buildings and classical groups, (1997), Chapman and Hall, London Zbl0933.20019MR1449872
- Marius van der Put, Marc Reversat, Lecture 11: Automorphic forms and Drinfeld’s reciprocity law, Drinfeld modules, modular schemes and applications (1997), 188-223, World Scientific Zbl0924.11051MR1630605
- P. Schneider, U. Stuhler, The cohomology of -adic symmetric spaces, Inv. Math. 105 (1991), 47-122 Zbl0751.14016MR1109620
- P. Schneider, J. Teitelbaum, An integral transform for -adic symmetric spaces, Duke Math. J. 86 (1997), 391-433 Zbl0885.14012MR1432303
- E. de Shalit, Residues on buildings and de Rham cohomology of -adic symmetric domains, Duke Math. J. 106 (2000), 123-191 Zbl1103.14010MR1810368
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.