On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields

Matteo Longo[1]

  • [1] Université Louis Pasteur IRMA 7, rue René Descartes 67084 Strasbourg (France)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 3, page 689-733
  • ISSN: 0373-0956

Abstract

top
Let E / F be a modular elliptic curve defined over a totally real number field F and let φ be its associated eigenform. This paper presents a new method, inspired by a recent work of Bertolini and Darmon, to control the rank of E over suitable quadratic imaginary extensions K / F . In particular, this argument can also be applied to the cases not covered by the work of Kolyvagin and Logachëv, that is, when [ F : ] is even and φ not new at any prime.

How to cite

top

Longo, Matteo. "On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields." Annales de l’institut Fourier 56.3 (2006): 689-733. <http://eudml.org/doc/10161>.

@article{Longo2006,
abstract = {Let $E/F$ be a modular elliptic curve defined over a totally real number field $F$ and let $\phi $ be its associated eigenform. This paper presents a new method, inspired by a recent work of Bertolini and Darmon, to control the rank of $E$ over suitable quadratic imaginary extensions $K/F$. In particular, this argument can also be applied to the cases not covered by the work of Kolyvagin and Logachëv, that is, when $[F:\mathbb\{Q\}]$ is even and $\phi $ not new at any prime.},
affiliation = {Université Louis Pasteur IRMA 7, rue René Descartes 67084 Strasbourg (France)},
author = {Longo, Matteo},
journal = {Annales de l’institut Fourier},
keywords = {Elliptic Curves; Birch and Swinnerton-Dyer Conjecture; Shimura Varieties; Congruences between Hilbert Modular Forms; elliptic curves; Birch and Swinnerton-Dyer conjecture; Shimura variety; congruences between Hilbert modular forms},
language = {eng},
number = {3},
pages = {689-733},
publisher = {Association des Annales de l’institut Fourier},
title = {On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields},
url = {http://eudml.org/doc/10161},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Longo, Matteo
TI - On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 3
SP - 689
EP - 733
AB - Let $E/F$ be a modular elliptic curve defined over a totally real number field $F$ and let $\phi $ be its associated eigenform. This paper presents a new method, inspired by a recent work of Bertolini and Darmon, to control the rank of $E$ over suitable quadratic imaginary extensions $K/F$. In particular, this argument can also be applied to the cases not covered by the work of Kolyvagin and Logachëv, that is, when $[F:\mathbb{Q}]$ is even and $\phi $ not new at any prime.
LA - eng
KW - Elliptic Curves; Birch and Swinnerton-Dyer Conjecture; Shimura Varieties; Congruences between Hilbert Modular Forms; elliptic curves; Birch and Swinnerton-Dyer conjecture; Shimura variety; congruences between Hilbert modular forms
UR - http://eudml.org/doc/10161
ER -

References

top
  1. Massimo Bertolini, Henri Darmon, Heegner points on Mumford-Tate curves, Invent. Math. 126 (1996), 413-456 Zbl0882.11034MR1419003
  2. Massimo Bertolini, Henri Darmon, A rigid analytic Gross-Zagier formula and arithmetic applications, Ann. of Math. (2) 146 (1997), 111-147 Zbl1029.11027MR1469318
  3. Massimo Bertolini, Henri Darmon, p -adic periods, p -adic L -functions, and the p -adic uniformization of Shimura curves, Duke Math. J. 98 (1999), 305-334 Zbl1037.11045MR1695201
  4. Massimo Bertolini, Henri Darmon, Iwasawa’s main conjecture for elliptic curves over anticyclotomic p -extensions, Ann. of Math. (2) 162 (2005), 1-64 Zbl1093.11037MR2178960
  5. Spencer Bloch, Kazuya Kato, L -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I 86 (1990), 333-400, Birkhäuser Boston, Boston, MA Zbl0768.14001MR1086888
  6. Nigel Boston, Lenstra Hendrik W. Jr., Kenneth A. Ribet, Quotients of group rings arising from two-dimensional representations, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 323-328 Zbl0718.16018MR1094193
  7. J.-F. Boutot, H. Carayol, Uniformisation p -adique des courbes de Shimura: les théorèmes de Čerednik et de Drinfeld, Astérisque (1991), 7, 45-158 Zbl0781.14010MR1141456
  8. Christophe Breuil, Brian Conrad, Fred Diamond, Richard Taylor, On the modularity of elliptic curves over Q : wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), 843-939 Zbl0982.11033MR1839918
  9. Daniel Bump, Solomon Friedberg, Jeffrey Hoffstein, Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic L -functions and their derivatives, Ann. of Math. (2) 131 (1990), 53-127 Zbl0699.10039MR1038358
  10. Henri Carayol, Sur la mauvaise réduction des courbes de Shimura, Compositio Math. 59 (1986), 151-230 Zbl0607.14021MR860139
  11. Henri Carayol, Sur les représentations galoisiennes modulo l attachées aux formes modulaires, Duke Math. J. 59 (1989), 785-801 Zbl0703.11027MR1046750
  12. I. V. Čerednik, Uniformization of algebraic curves by discrete arithmetic subgroups of PGL 2 ( k w ) with compact quotient spaces, Mat. Sb. (N.S.) 100(142) (1976), 59-88, 165 MR491706
  13. J. Coates, R. Greenberg, Kummer theory for abelian varieties over local fields, Invent. Math. 124 (1996), 129-174 Zbl0858.11032MR1369413
  14. Brian Conrad, Fred Diamond, Richard Taylor, Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc. 12 (1999), 521-567 Zbl0923.11085MR1639612
  15. Henri Darmon, Fred Diamond, Richard Taylor, Fermat’s last theorem, Current developments in mathematics, 1995 (Cambridge, MA) (1994), 1-154, Internat. Press, Cambridge, MA Zbl0877.11035
  16. Henri Darmon, Adam Logan, Periods of Hilbert modular forms and rational points on elliptic curves, Int. Math. Res. Not. (2003), 2153-2180 Zbl1038.11035MR1997296
  17. Fred Diamond, On deformation rings and Hecke rings, Ann. of Math. (2) 144 (1996), 137-166 Zbl0867.11032MR1405946
  18. Fred Diamond, Richard Taylor, Nonoptimal levels of mod l modular representations, Invent. Math. 115 (1994), 435-462 Zbl0847.11025MR1262939
  19. V. G. Drinfel’d, Coverings of p -adic symmetric domains, Funkcional. Anal. i Priložen. 10 (1976), 29-40 Zbl0346.14010MR422290
  20. M. Eichler, The basis problem for modular forms and the traces of the Hecke operators, Modular functions of one variable, I (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) 320 (1973), 75-151, Springer, Berlin Zbl0258.10013MR485698
  21. Lothar Gerritzen, Marius van der Put, Schottky groups and Mumford curves, 817 (1980), Springer, Berlin Zbl0442.14009MR590243
  22. Ralph Greenberg, Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997) 1716 (1999), 51-144, Springer, Berlin Zbl0946.11027MR1754686
  23. Benedict H. Gross, Heights and the special values of L -series, Number theory (Montreal, Que., 1985) 7 (1987), 115-187, Amer. Math. Soc., Providence, RI Zbl0623.10019MR894322
  24. Benedict H. Gross, Kolyvagin’s work on modular elliptic curves, -functions and arithmetic (Durham, 1989) 153 (1991), 235-256, Cambridge Univ. Press, Cambridge Zbl0743.14021
  25. Benedict H. Gross, Don B. Zagier, Heegner points and derivatives of L -series, Invent. Math. 84 (1986), 225-320 Zbl0608.14019MR833192
  26. Alexander Grothendieck, Groupes de monodromie en géométrie algébrique. I, (1972), Springer-Verlag, Berlin Zbl0237.00013MR354656
  27. H. Jacquet, R. P. Langlands, Automorphic forms on GL ( 2 ) , (1970), Springer-Verlag, Berlin Zbl0236.12010MR401654
  28. Frazer Jarvis, Level lowering for modular mod l representations over totally real fields, Math. Ann. 313 (1999), 141-160 Zbl0978.11020MR1666809
  29. Frazer Jarvis, Mazur’s principle for totally real fields of odd degree, Compositio Math. 116 (1999), 39-79 Zbl1053.11043MR1669444
  30. Frazer Jarvis, Correspondences on Shimura curves and Mazur’s principle at p , Pacific J. Math. 213 (2004), 267-280 Zbl1073.11030MR2036920
  31. Bruce W. Jordan, Ron Livné, Integral Hodge theory and congruences between modular forms, Duke Math. J. 80 (1995), 419-484 Zbl0851.11032MR1369399
  32. Bruce W. Jordan, Ron A. Livné, Local Diophantine properties of Shimura curves, Math. Ann. 270 (1985), 235-248 Zbl0536.14018MR771981
  33. V. A. Kolyvagin, Finiteness of E ( Q ) and SH ( E , Q ) for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 522-540, 670–671 Zbl0662.14017MR954295
  34. V. A. Kolyvagin, D. Y. Logachëv, Finiteness of SH over totally real fields, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 851-876 Zbl0791.14019MR1137589
  35. Matteo Longo, On the Birch and Swinnerton-Dyer conjecture over totally real fields, (2004) Zbl1152.11028
  36. J. S. Milne, Arithmetic duality theorems, 1 (1986), Academic Press Inc., Boston, MA Zbl0613.14019MR881804
  37. M. Ram Murty, V. Kumar Murty, Mean values of derivatives of modular L -series, Ann. of Math. (2) 133 (1991), 447-475 Zbl0745.11032MR1109350
  38. Ali Rajaei, On the levels of mod l Hilbert modular forms, J. Reine Angew. Math. 537 (2001), 33-65 Zbl0982.11023MR1856257
  39. K. A. Ribet, On modular representations of Gal ( Q ¯ / Q ) arising from modular forms, Invent. Math. 100 (1990), 431-476 Zbl0773.11039MR1047143
  40. Kenneth A. Ribet, Congruence relations between modular forms, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) (1984), 503-514, PWN, Warsaw Zbl0575.10024MR804706
  41. Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331 Zbl0235.14012MR387283
  42. G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), 637-679 Zbl0394.10015MR507462
  43. Goro Shimura, Introduction to the arithmetic theory of automorphic functions, (1971), Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo Zbl0221.10029MR314766
  44. Joseph H. Silverman, The arithmetic of elliptic curves, 106 (1986), Springer-Verlag, New York Zbl0585.14026MR817210
  45. Richard Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), 265-280 Zbl0705.11031MR1016264
  46. Richard Taylor, Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), 553-572 Zbl0823.11030MR1333036
  47. Marie-France Vignéras, Arithmétique des algèbres de quaternions, 800 (1980), Springer, Berlin Zbl0422.12008MR580949
  48. J.-L. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie, Compositio Math. 54 (1985), 173-242 Zbl0567.10021MR783511
  49. J.-L. Waldspurger, Correspondances de Shimura et quaternions, Forum Math. 3 (1991), 219-307 Zbl0724.11026MR1103429
  50. A. Wiles, On ordinary λ -adic representations associated to modular forms, Invent. Math. 94 (1988), 529-573 Zbl0664.10013MR969243
  51. A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), 443-551 Zbl0823.11029MR1333035
  52. Shou-Wu Zhang, Gross-Zagier formula for GL 2 , Asian J. Math. 5 (2001), 183-290 Zbl1111.11030MR1868935
  53. Shou-Wu Zhang, Heights of Heegner points on Shimura curves, Ann. of Math. (2) 153 (2001), 27-147 Zbl1036.11029MR1826411

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.