On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields
Matteo Longo[1]
- [1] Université Louis Pasteur IRMA 7, rue René Descartes 67084 Strasbourg (France)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 3, page 689-733
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLongo, Matteo. "On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields." Annales de l’institut Fourier 56.3 (2006): 689-733. <http://eudml.org/doc/10161>.
@article{Longo2006,
abstract = {Let $E/F$ be a modular elliptic curve defined over a totally real number field $F$ and let $\phi $ be its associated eigenform. This paper presents a new method, inspired by a recent work of Bertolini and Darmon, to control the rank of $E$ over suitable quadratic imaginary extensions $K/F$. In particular, this argument can also be applied to the cases not covered by the work of Kolyvagin and Logachëv, that is, when $[F:\mathbb\{Q\}]$ is even and $\phi $ not new at any prime.},
affiliation = {Université Louis Pasteur IRMA 7, rue René Descartes 67084 Strasbourg (France)},
author = {Longo, Matteo},
journal = {Annales de l’institut Fourier},
keywords = {Elliptic Curves; Birch and Swinnerton-Dyer Conjecture; Shimura Varieties; Congruences between Hilbert Modular Forms; elliptic curves; Birch and Swinnerton-Dyer conjecture; Shimura variety; congruences between Hilbert modular forms},
language = {eng},
number = {3},
pages = {689-733},
publisher = {Association des Annales de l’institut Fourier},
title = {On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields},
url = {http://eudml.org/doc/10161},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Longo, Matteo
TI - On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 3
SP - 689
EP - 733
AB - Let $E/F$ be a modular elliptic curve defined over a totally real number field $F$ and let $\phi $ be its associated eigenform. This paper presents a new method, inspired by a recent work of Bertolini and Darmon, to control the rank of $E$ over suitable quadratic imaginary extensions $K/F$. In particular, this argument can also be applied to the cases not covered by the work of Kolyvagin and Logachëv, that is, when $[F:\mathbb{Q}]$ is even and $\phi $ not new at any prime.
LA - eng
KW - Elliptic Curves; Birch and Swinnerton-Dyer Conjecture; Shimura Varieties; Congruences between Hilbert Modular Forms; elliptic curves; Birch and Swinnerton-Dyer conjecture; Shimura variety; congruences between Hilbert modular forms
UR - http://eudml.org/doc/10161
ER -
References
top- Massimo Bertolini, Henri Darmon, Heegner points on Mumford-Tate curves, Invent. Math. 126 (1996), 413-456 Zbl0882.11034MR1419003
- Massimo Bertolini, Henri Darmon, A rigid analytic Gross-Zagier formula and arithmetic applications, Ann. of Math. (2) 146 (1997), 111-147 Zbl1029.11027MR1469318
- Massimo Bertolini, Henri Darmon, -adic periods, -adic -functions, and the -adic uniformization of Shimura curves, Duke Math. J. 98 (1999), 305-334 Zbl1037.11045MR1695201
- Massimo Bertolini, Henri Darmon, Iwasawa’s main conjecture for elliptic curves over anticyclotomic -extensions, Ann. of Math. (2) 162 (2005), 1-64 Zbl1093.11037MR2178960
- Spencer Bloch, Kazuya Kato, -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I 86 (1990), 333-400, Birkhäuser Boston, Boston, MA Zbl0768.14001MR1086888
- Nigel Boston, Lenstra Hendrik W. Jr., Kenneth A. Ribet, Quotients of group rings arising from two-dimensional representations, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 323-328 Zbl0718.16018MR1094193
- J.-F. Boutot, H. Carayol, Uniformisation -adique des courbes de Shimura: les théorèmes de Čerednik et de Drinfeld, Astérisque (1991), 7, 45-158 Zbl0781.14010MR1141456
- Christophe Breuil, Brian Conrad, Fred Diamond, Richard Taylor, On the modularity of elliptic curves over : wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), 843-939 Zbl0982.11033MR1839918
- Daniel Bump, Solomon Friedberg, Jeffrey Hoffstein, Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic -functions and their derivatives, Ann. of Math. (2) 131 (1990), 53-127 Zbl0699.10039MR1038358
- Henri Carayol, Sur la mauvaise réduction des courbes de Shimura, Compositio Math. 59 (1986), 151-230 Zbl0607.14021MR860139
- Henri Carayol, Sur les représentations galoisiennes modulo attachées aux formes modulaires, Duke Math. J. 59 (1989), 785-801 Zbl0703.11027MR1046750
- I. V. Čerednik, Uniformization of algebraic curves by discrete arithmetic subgroups of with compact quotient spaces, Mat. Sb. (N.S.) 100(142) (1976), 59-88, 165 MR491706
- J. Coates, R. Greenberg, Kummer theory for abelian varieties over local fields, Invent. Math. 124 (1996), 129-174 Zbl0858.11032MR1369413
- Brian Conrad, Fred Diamond, Richard Taylor, Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc. 12 (1999), 521-567 Zbl0923.11085MR1639612
- Henri Darmon, Fred Diamond, Richard Taylor, Fermat’s last theorem, Current developments in mathematics, 1995 (Cambridge, MA) (1994), 1-154, Internat. Press, Cambridge, MA Zbl0877.11035
- Henri Darmon, Adam Logan, Periods of Hilbert modular forms and rational points on elliptic curves, Int. Math. Res. Not. (2003), 2153-2180 Zbl1038.11035MR1997296
- Fred Diamond, On deformation rings and Hecke rings, Ann. of Math. (2) 144 (1996), 137-166 Zbl0867.11032MR1405946
- Fred Diamond, Richard Taylor, Nonoptimal levels of mod modular representations, Invent. Math. 115 (1994), 435-462 Zbl0847.11025MR1262939
- V. G. Drinfel’d, Coverings of -adic symmetric domains, Funkcional. Anal. i Priložen. 10 (1976), 29-40 Zbl0346.14010MR422290
- M. Eichler, The basis problem for modular forms and the traces of the Hecke operators, Modular functions of one variable, I (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) 320 (1973), 75-151, Springer, Berlin Zbl0258.10013MR485698
- Lothar Gerritzen, Marius van der Put, Schottky groups and Mumford curves, 817 (1980), Springer, Berlin Zbl0442.14009MR590243
- Ralph Greenberg, Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997) 1716 (1999), 51-144, Springer, Berlin Zbl0946.11027MR1754686
- Benedict H. Gross, Heights and the special values of -series, Number theory (Montreal, Que., 1985) 7 (1987), 115-187, Amer. Math. Soc., Providence, RI Zbl0623.10019MR894322
- Benedict H. Gross, Kolyvagin’s work on modular elliptic curves, -functions and arithmetic (Durham, 1989) 153 (1991), 235-256, Cambridge Univ. Press, Cambridge Zbl0743.14021
- Benedict H. Gross, Don B. Zagier, Heegner points and derivatives of -series, Invent. Math. 84 (1986), 225-320 Zbl0608.14019MR833192
- Alexander Grothendieck, Groupes de monodromie en géométrie algébrique. I, (1972), Springer-Verlag, Berlin Zbl0237.00013MR354656
- H. Jacquet, R. P. Langlands, Automorphic forms on , (1970), Springer-Verlag, Berlin Zbl0236.12010MR401654
- Frazer Jarvis, Level lowering for modular mod representations over totally real fields, Math. Ann. 313 (1999), 141-160 Zbl0978.11020MR1666809
- Frazer Jarvis, Mazur’s principle for totally real fields of odd degree, Compositio Math. 116 (1999), 39-79 Zbl1053.11043MR1669444
- Frazer Jarvis, Correspondences on Shimura curves and Mazur’s principle at , Pacific J. Math. 213 (2004), 267-280 Zbl1073.11030MR2036920
- Bruce W. Jordan, Ron Livné, Integral Hodge theory and congruences between modular forms, Duke Math. J. 80 (1995), 419-484 Zbl0851.11032MR1369399
- Bruce W. Jordan, Ron A. Livné, Local Diophantine properties of Shimura curves, Math. Ann. 270 (1985), 235-248 Zbl0536.14018MR771981
- V. A. Kolyvagin, Finiteness of and SH for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 522-540, 670–671 Zbl0662.14017MR954295
- V. A. Kolyvagin, D. Y. Logachëv, Finiteness of SH over totally real fields, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 851-876 Zbl0791.14019MR1137589
- Matteo Longo, On the Birch and Swinnerton-Dyer conjecture over totally real fields, (2004) Zbl1152.11028
- J. S. Milne, Arithmetic duality theorems, 1 (1986), Academic Press Inc., Boston, MA Zbl0613.14019MR881804
- M. Ram Murty, V. Kumar Murty, Mean values of derivatives of modular -series, Ann. of Math. (2) 133 (1991), 447-475 Zbl0745.11032MR1109350
- Ali Rajaei, On the levels of mod Hilbert modular forms, J. Reine Angew. Math. 537 (2001), 33-65 Zbl0982.11023MR1856257
- K. A. Ribet, On modular representations of arising from modular forms, Invent. Math. 100 (1990), 431-476 Zbl0773.11039MR1047143
- Kenneth A. Ribet, Congruence relations between modular forms, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) (1984), 503-514, PWN, Warsaw Zbl0575.10024MR804706
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331 Zbl0235.14012MR387283
- G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), 637-679 Zbl0394.10015MR507462
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, (1971), Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo Zbl0221.10029MR314766
- Joseph H. Silverman, The arithmetic of elliptic curves, 106 (1986), Springer-Verlag, New York Zbl0585.14026MR817210
- Richard Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), 265-280 Zbl0705.11031MR1016264
- Richard Taylor, Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), 553-572 Zbl0823.11030MR1333036
- Marie-France Vignéras, Arithmétique des algèbres de quaternions, 800 (1980), Springer, Berlin Zbl0422.12008MR580949
- J.-L. Waldspurger, Sur les valeurs de certaines fonctions automorphes en leur centre de symétrie, Compositio Math. 54 (1985), 173-242 Zbl0567.10021MR783511
- J.-L. Waldspurger, Correspondances de Shimura et quaternions, Forum Math. 3 (1991), 219-307 Zbl0724.11026MR1103429
- A. Wiles, On ordinary -adic representations associated to modular forms, Invent. Math. 94 (1988), 529-573 Zbl0664.10013MR969243
- A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), 443-551 Zbl0823.11029MR1333035
- Shou-Wu Zhang, Gross-Zagier formula for , Asian J. Math. 5 (2001), 183-290 Zbl1111.11030MR1868935
- Shou-Wu Zhang, Heights of Heegner points on Shimura curves, Ann. of Math. (2) 153 (2001), 27-147 Zbl1036.11029MR1826411
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.