Relative ampleness in rigid geometry
Brian Conrad[1]
- [1] University of Michigan Department of Mathematics Ann Arbor, MI 48109 (USA)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 4, page 1049-1126
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topConrad, Brian. "Relative ampleness in rigid geometry." Annales de l’institut Fourier 56.4 (2006): 1049-1126. <http://eudml.org/doc/10167>.
@article{Conrad2006,
abstract = {We develop a rigid-analytic theory of relative ampleness for line bundles and record some applications to faithfully flat descent for morphisms and proper geometric objects. The basic definition is fibral, but pointwise arguments from the algebraic and complex-analytic cases do not apply, so we use cohomological properties of formal schemes over completions of local rings on rigid spaces. An analytic notion of quasi-coherence is introduced so that we can recover a proper object from sections of an ample bundle via suitable Proj construction. The locus of relative ampleness in the base is studied, as is the behavior of relative ampleness with respect to analytification and arbitrary extension of the base field. In particular, we obtain a quick new proof of the relative GAGA theorem over affinoids.},
affiliation = {University of Michigan Department of Mathematics Ann Arbor, MI 48109 (USA)},
author = {Conrad, Brian},
journal = {Annales de l’institut Fourier},
keywords = {Ampleness; rigid geometry; descent; ampleness},
language = {eng},
number = {4},
pages = {1049-1126},
publisher = {Association des Annales de l’institut Fourier},
title = {Relative ampleness in rigid geometry},
url = {http://eudml.org/doc/10167},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Conrad, Brian
TI - Relative ampleness in rigid geometry
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 4
SP - 1049
EP - 1126
AB - We develop a rigid-analytic theory of relative ampleness for line bundles and record some applications to faithfully flat descent for morphisms and proper geometric objects. The basic definition is fibral, but pointwise arguments from the algebraic and complex-analytic cases do not apply, so we use cohomological properties of formal schemes over completions of local rings on rigid spaces. An analytic notion of quasi-coherence is introduced so that we can recover a proper object from sections of an ample bundle via suitable Proj construction. The locus of relative ampleness in the base is studied, as is the behavior of relative ampleness with respect to analytification and arbitrary extension of the base field. In particular, we obtain a quick new proof of the relative GAGA theorem over affinoids.
LA - eng
KW - Ampleness; rigid geometry; descent; ampleness
UR - http://eudml.org/doc/10167
ER -
References
top- M. Artin, Algebraization of formal moduli. I, Global Analysis (Papers in Honor of K. Kodaira) (1969), 21-71, Univ. Tokyo Press, Tokyo Zbl0205.50402MR260746
- V. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs 33 (1990), Amer. Math. Soc. Zbl0715.14013MR1070709
- V. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Publ. Math. IHÉS 78 (1993), 7-161 Zbl0804.32019MR1259429
- E. Bierstone, P. Milman, Semianalytic sets and subanalytic sets, Publ. Math. IHÉS 67 (1988), 5-42 Zbl0674.32002MR972342
- S. Bosch, U. Görtz, Coherent modules and their descent on relative rigid spaces, J. reine angew. Math. 495 (1998), 119-134 Zbl0884.14009MR1603849
- S. Bosch, U. Günzter, R. Remmert, Non-Archimedean analysis, (1984), Springer-Verlag Zbl0539.14017MR746961
- S. Bosch, W. Lütkebohmert, Formal and rigid geometry I, Math. Annalen 295 (1993), 291-317 Zbl0808.14017MR1202394
- S. Bosch, W. Lütkebohmert, Formal and rigid geometry II, Math. Annalen 296 (1993), 403-429 Zbl0808.14018MR1225983
- S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, (1990), Springer-Verlag Zbl0705.14001MR1045822
- S. Bosch, W. Lütkebohmert, M. Raynaud, Formal and rigid geometry III. The relative maximum principle, Math. Annalen 302 (1995), 1-29 Zbl0839.14013MR1329445
- B. Conrad, Irreducible components of rigid spaces, Ann. Inst. Fourier Grenoble 49 (1999), 473-541 Zbl0928.32011MR1697371
- B. Conrad, Higher-level canonical subgroups in abelian varieties, (2005)
- B. Conrad, Modular curves and rigid-analytic spaces, (2005) Zbl1156.14312MR2217566
- B. Conrad, Rigid spaces and algebraic spaces, (2005)
- J. Dieudonné, A. Grothendieck, Éléments de géométrie algébrique, Publ. Math. IHÉS 4, 8, 11, 17, 20, 24, 28, 32 (1960–1967) Zbl0203.23301
- J. Fresnel, M. Matignon, Sur les espaces analytiques quasi-compact de dimenion sur un corps valué complet ultramétrique, Ann. Mat. Pura Appl. 145 (1986), 159-210 Zbl0623.32020MR886711
- J. Fresnel, M. van der Put, Rigid analytic geometry and its applications, (2004), Birkhäuser, Boston Zbl1096.14014MR2014891
- J. Frisch, Points de platitude d’un morphisme d’espaces analytiques complexes, Inv. Math. 4 (1967), 118-138 Zbl0167.06803MR222336
- R. Godement, Théorie des faiseaux, (1973), Hermann, Paris MR345092
- H. Grauert, R. Remmert, Bilder und Urbilder analytishcer Garben, Annals of Math. 68 (1958), 393-443 Zbl0089.06003MR102612
- H. Grauert, R. Remmert, Theory of Stein spaces, 239 (1979), Springer-Verlag Zbl0433.32007MR580152
- H. Grauert, R. Remmert, Coherent analytic sheaves, 265 (1984), Springer-Verlag Zbl0537.32001MR755331
- A. Grothendieck, Techniques de construction en géométrie analytique IX: quelques problèmes de modules, exposé 16, Séminaire H. Cartan (1960/61), 1-20 Zbl0142.33504
- A. Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique IV: les schémas de Hilbert, exposé 221, Séminaire Bourbaki 1960/61 (1961), Secrétariat mathématique, 11 rue Pierre Curie, Paris Zbl0236.14003MR1611207
- A. Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique V. Les schémas de Picard: théorèmes d’existence, exposé 232, Séminaire Bourbaki 1961/62 (1962), Secrétariat mathématique, Paris Zbl0238.14014MR146040
- A. Grothendieck, Revêtements étales et groupe fondamental, Lecture Note in Math. 224 (1971), Springer-Verlag, New York MR354651
- A. Grothendieck et al., Théorie des intersections et théorème de Riemann-Roch, Lecture Note in Math. 225 (1971), Springer-Verlag, New York Zbl0229.14008MR354655
- W. Gubler, Local heights on subvarieties over non-Archimedean fields, J. reine angew. Math. 498 (1998), 61-113 Zbl0906.14013MR1629925
- M. Hakim, Topos annelés et schémas relatifs, 64 (1972), Springer-Verlag Zbl0246.14004MR364245
- C. Houzel, Géométrie analytique locale: I, II, exposés 18–19, Séminaire H. Cartan (1960/61) Zbl0121.15906
- R. Kiehl, Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie, Inv. Math. 2 (1967), 191-214 Zbl0202.20101MR210948
- M. Kisin, Local constancy in -adic families of Galois representations, Math. Z. 230 (1999), 569-593 Zbl0932.32028MR1680032
- U. Köpf, Über eigentliche familien algebraischer varietäten über affinoiden räumen, Schriftenreihe Math. Inst. Münster, 2. Serie. Heft 7 (1974) Zbl0275.14006MR422671
- W. Lütkebohmert, Der Satz von Remmert-Stein in der nichtarchimedischen Funktionentheorie, Math. Z. 139 (1974), 69-84 Zbl0283.32022MR352527
- W. Lütkebohmert, Formal-algebraic and rigid-analytic geometry, Math. Annalen 286 (1990), 341-371 Zbl0716.32022MR1032938
- W. Lütkebohmert, On compactification of schemes, Manus. Math. 80 (1993), 95-111 Zbl0822.14010MR1226600
- H. Matsumura, Commutative ring theory, (1986), Cambridge Univ. Press Zbl0603.13001MR879273
- S. Mochizuki, Foundations of -adic Teichmüller theory, AMS/IP Studies in Adv. Math. 11 (1999), Intl. Press, Cambridge Zbl0969.14013MR1700772
- D. Mumford, Abelian varieties, (1970), Oxford University Press, Bombay Zbl0223.14022MR282985
- H. Schoutens, Blowing up in rigid analytic geometry, Bull. Belg. Math. Soc. 2 (1995), 399-417 Zbl0854.32020MR1355829
- Y-T. Siu, Noetherianness of rings of holomorphic functions on Stein compact subsets, Proc. Amer. Math. Soc. 21 (1969), 483-489 Zbl0175.37402MR247135
- M. Temkin, On local properties of non-Archimedean analytic spaces, Math. Annalen 318 (2000), 585-607 Zbl0972.32019MR1800770
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.