Irreducible components of rigid spaces

Brian Conrad

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 2, page 473-541
  • ISSN: 0373-0956

Abstract

top
This paper lays the foundations for the global theory of irreducible components of rigid analytic spaces over a complete field k . We prove the excellence of the local rings on rigid spaces over k . This is used to prove the standard existence theorems and to show compatibility with the notion of irreducible components for schemes and formal schemes. Behavior with respect to extension of the base field is also studied. It is often necessary to augment scheme-theoretic techniques with other algebraic and geometric arguments.

How to cite

top

Conrad, Brian. "Irreducible components of rigid spaces." Annales de l'institut Fourier 49.2 (1999): 473-541. <http://eudml.org/doc/75345>.

@article{Conrad1999,
abstract = {This paper lays the foundations for the global theory of irreducible components of rigid analytic spaces over a complete field $k$. We prove the excellence of the local rings on rigid spaces over $k$. This is used to prove the standard existence theorems and to show compatibility with the notion of irreducible components for schemes and formal schemes. Behavior with respect to extension of the base field is also studied. It is often necessary to augment scheme-theoretic techniques with other algebraic and geometric arguments.},
author = {Conrad, Brian},
journal = {Annales de l'institut Fourier},
keywords = {irreducible component; rigid analysis; excellence; Fredholm series},
language = {eng},
number = {2},
pages = {473-541},
publisher = {Association des Annales de l'Institut Fourier},
title = {Irreducible components of rigid spaces},
url = {http://eudml.org/doc/75345},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Conrad, Brian
TI - Irreducible components of rigid spaces
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 2
SP - 473
EP - 541
AB - This paper lays the foundations for the global theory of irreducible components of rigid analytic spaces over a complete field $k$. We prove the excellence of the local rings on rigid spaces over $k$. This is used to prove the standard existence theorems and to show compatibility with the notion of irreducible components for schemes and formal schemes. Behavior with respect to extension of the base field is also studied. It is often necessary to augment scheme-theoretic techniques with other algebraic and geometric arguments.
LA - eng
KW - irreducible component; rigid analysis; excellence; Fredholm series
UR - http://eudml.org/doc/75345
ER -

References

top
  1. [BKKN] R. BERGER et al., Differentialrechnung in der analytischen Geometrie, Lecture Notes in Math 38, Springer-Verlag, New York, 1967. Zbl0163.03202MR37 #469
  2. [Ber] P. BERTHELOT, Cohomologie rigide et cohomologie rigide à supports propres, preprint. 
  3. [B] S. BOSCH, Orthonormalbasen in der nichtarchimedischen Funktionentheorie, Manuscripta Mathematica, 1 (1969), 35-57. Zbl0164.21202MR42 #4781
  4. [BGR] S. BOSCH, U. GÜNZTER, R. REMMERT, Non-Archimedean Analysis, Springer-Verlag, 1984. 
  5. [BL1] S. BOSCH, W. LÜTKEBOHMERT, Formal and Rigid Geometry I, Math. Annalen, 295 (1993), 291-317. Zbl0808.14017MR94a:11090
  6. [BL2] S. BOSCH, W. LÜTKEBOHMERT, Formal and Rigid Geometry II, Math. Annalen, 296 (1993), 403-429. Zbl0808.14018MR94e:11070
  7. [BL3] S. BOSCH, W. LÜTKEBOHMERT, Formal and Rigid Geometry III, Math. Annalen, 302 (1995), 1-29. Zbl0839.14013
  8. [CM] R. COLEMAN, B. MAZUR, The Eigencurve, preprint. Zbl0932.11030
  9. [deJ] J. DEJONG, Crystalline Dieudonné Module Theory via Formal and Rigid Geometry, Publ. Math. IHES, 82 (1995), 5-96. Zbl0864.14009MR97f:14047
  10. [EGA] J. DIEUDONNÉ, A. GROTHENDIECK, Éléments de géométrie algébrique, Publ. Math. IHES, 4, 8, 11, 17, 20, 24, 28, 32 (1960-1967). 
  11. [CAS] H. GRAUERT, R. REMMERT, Coherent Analytic Sheaves, Springer-Verlag, Grundl. 265, 1984. Zbl0537.32001
  12. [TSS] H. GRAUERT, R. REMMERT, The Theory of Stein Spaces, Springer-Verlag, Grundl. 236, 1979. Zbl0433.32007
  13. [SGA1] A. GROTHENDIECK, Revêtements étales et groupe fondamental, Lecture Notes in Math. 224, Springer-Verlag, NY, 1971. Zbl0234.14002
  14. [K1] R. KIEHL, Theorem A und Theorem B in der nicharchimedischen Funktionentheorie, Inv. Math., 2 (1967), 256-273. Zbl0202.20201
  15. [K2] R. KIEHL, Die analytische Normalität affinoider Ringe, Arch. der Math., 18 (1967), 479-484. Zbl0166.04401
  16. [K3] R. KIEHL, Ausgezeichnete Ringe in der nichtarchimedischen analytischen Geometrie, Journal für Mathematik, 234 (1969), 89-98. Zbl0169.36501
  17. [Ki] M. KISIN, Local Constancy in p-adic Families of Galois Representations, Math. Z., 230 (1999), 569-593. Zbl0932.32028
  18. [Ko] U. KÖPF, Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen, Schriftenreihe Math. Inst. Münster, 2. Serie. Heft 7, (1974). Zbl0275.14006
  19. [L1] W. LÜTKEBOHMERT, Der Satz von Remmert-Stein in der nicharchimedoschen Funktionentheorie, Math. Z., 139 (1974), 69-84. Zbl0283.32022
  20. [L2] W. LÜTKEBOHMERT, Formal-algebraic and rigid-analytic geometry, Math. Annalen, 286 (1990), 341-371. Zbl0716.32022
  21. [Mat1] H. MATSUMURA, Commutative Algebra 2nd ed., Benjamin Publishing Co., 1980. Zbl0441.13001
  22. [Mat2] H. MATSUMURA, Commutative Ring Theory, Cambridge Univ. Press, 1986. Zbl0603.13001
  23. [V1] P. VALABREGA, On the excellent property for power series rings over polynomial rings, J. Math. Kyoto Univ., 15-2 (1975), 387-395. Zbl0306.13011
  24. [V2] P. VALABREGA, A Few Theorems on Completion of Excellent Rings, Nagoya Math. J., 61 (1976), 127-133. Zbl0319.13008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.