The Local Nash problem on arc families of singularities
- [1] Tokyo Institute of Technology Department of Mathematics Oh-Okayama, Meguro 152-8551 Tokyo (Japan)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 4, page 1207-1223
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topIshii, Shihoko. "The Local Nash problem on arc families of singularities." Annales de l’institut Fourier 56.4 (2006): 1207-1223. <http://eudml.org/doc/10170>.
@article{Ishii2006,
abstract = {This paper shows the affirmative answer to the local Nash problem for a toric singularity and analytically pretoric singularity. As a corollary we obtain the affirmative answer to the local Nash problem for a quasi-ordinary singularity.},
affiliation = {Tokyo Institute of Technology Department of Mathematics Oh-Okayama, Meguro 152-8551 Tokyo (Japan)},
author = {Ishii, Shihoko},
journal = {Annales de l’institut Fourier},
keywords = {Arc space; Nash problem; singularities; arc space},
language = {eng},
number = {4},
pages = {1207-1223},
publisher = {Association des Annales de l’institut Fourier},
title = {The Local Nash problem on arc families of singularities},
url = {http://eudml.org/doc/10170},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Ishii, Shihoko
TI - The Local Nash problem on arc families of singularities
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 4
SP - 1207
EP - 1223
AB - This paper shows the affirmative answer to the local Nash problem for a toric singularity and analytically pretoric singularity. As a corollary we obtain the affirmative answer to the local Nash problem for a quasi-ordinary singularity.
LA - eng
KW - Arc space; Nash problem; singularities; arc space
UR - http://eudml.org/doc/10170
ER -
References
top- C. Bouvier, Diviseurs essentiels, composantes essentielle des variétés toriques singulières, Duke Math. J. 91 (1998), 609-620 Zbl0966.14038MR1604179
- C. Bouvier, G. Gonzalez-Sprinberg, Système générateur minimal, diviseurs essentiels et G-désingularisation, Tohoku Math. J. 47 (1995), 125-149 Zbl0823.14006MR1311446
- W. Fulton, Introduction to toric varieties, 131 (1993), Princeton University Press, Princeton, NJ Zbl0813.14039MR1234037
- Y.-N. Gau, Embedded topological classification of quasi-ordinary singularities, Mem. Amer. Math. Soc. 74 (1988), 109-129 Zbl0658.14004MR954948
- H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II, Annals of Math. 79 (1964), 109-326 Zbl0122.38603MR199184
- S. Ishii, The arc space of a toric variety, J. Algebra 278 (2004), 666-683 Zbl1073.14066MR2071659
- S. Ishii, Arcs, valuations and the Nash map, J. reine angew. Math 588 (2005), 71-92 Zbl1082.14007MR2196729
- S. Ishii, J. Kollár, The Nash problem on arc families of singularities, Duke Math. J. 120 (2003), 601-620 Zbl1052.14011MR2030097
- M. Lejeune-Jalabert, A. J. Reguera-Lopez, Arcs and wedges on sandwiched surface singularities, Amer. J. Math. 121 (1999), 1191-1213 Zbl0960.14015MR1719822
- J. Lipman, Quasi-ordinary singularities of embedded surfaces, (1965)
- J. Lipman, Quasi-ordinary singularities of surfaces in , Singularities, Part 2 (Arcata, Calif., 1981) 40 (1983), 161-172, Amer. Math. Soc., Providence, RI Zbl0521.14014MR713245
- J. F. Nash, Arc structure of singularities, Duke Math. J. 81 (1995), 31-38 Zbl0880.14010MR1381967
- K. Oh, Topological types of quasi-ordinary singularities, Proc. AMS 117 (1993), 53-59 Zbl0791.32018MR1106181
- P. D. Gonález Pérez, Toric embedded resolutions of quasi-ordinary hypersurface singularities, Ann. Inst. Fourier (Grenoble) 53 (2003), 1819-1881 Zbl1052.32024MR2038781
- C. Plenat, P. Popescu-Pampu, A class of non-rational surface singularities for which the Nash map is bijective Zbl1119.14007
- A. J. Reguera, Image of Nash map in terms of wedges, C. R. Acad. Sci. Ser. I 338 (2004), 385-390 Zbl1044.14032MR2057169
- A. J. Reguera-Lopez, Families of arcs on rational surface singularities, Manuscr. Math. 88 (1995), 321-333 Zbl0867.14012MR1359701
- P. Vojta, Jets via Hasse-Schmidt derivations Zbl1194.13027
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.