The Local Nash problem on arc families of singularities

Shihoko Ishii[1]

  • [1] Tokyo Institute of Technology Department of Mathematics Oh-Okayama, Meguro 152-8551 Tokyo (Japan)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 4, page 1207-1223
  • ISSN: 0373-0956

Abstract

top
This paper shows the affirmative answer to the local Nash problem for a toric singularity and analytically pretoric singularity. As a corollary we obtain the affirmative answer to the local Nash problem for a quasi-ordinary singularity.

How to cite

top

Ishii, Shihoko. "The Local Nash problem on arc families of singularities." Annales de l’institut Fourier 56.4 (2006): 1207-1223. <http://eudml.org/doc/10170>.

@article{Ishii2006,
abstract = {This paper shows the affirmative answer to the local Nash problem for a toric singularity and analytically pretoric singularity. As a corollary we obtain the affirmative answer to the local Nash problem for a quasi-ordinary singularity.},
affiliation = {Tokyo Institute of Technology Department of Mathematics Oh-Okayama, Meguro 152-8551 Tokyo (Japan)},
author = {Ishii, Shihoko},
journal = {Annales de l’institut Fourier},
keywords = {Arc space; Nash problem; singularities; arc space},
language = {eng},
number = {4},
pages = {1207-1223},
publisher = {Association des Annales de l’institut Fourier},
title = {The Local Nash problem on arc families of singularities},
url = {http://eudml.org/doc/10170},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Ishii, Shihoko
TI - The Local Nash problem on arc families of singularities
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 4
SP - 1207
EP - 1223
AB - This paper shows the affirmative answer to the local Nash problem for a toric singularity and analytically pretoric singularity. As a corollary we obtain the affirmative answer to the local Nash problem for a quasi-ordinary singularity.
LA - eng
KW - Arc space; Nash problem; singularities; arc space
UR - http://eudml.org/doc/10170
ER -

References

top
  1. C. Bouvier, Diviseurs essentiels, composantes essentielle des variétés toriques singulières, Duke Math. J. 91 (1998), 609-620 Zbl0966.14038MR1604179
  2. C. Bouvier, G. Gonzalez-Sprinberg, Système générateur minimal, diviseurs essentiels et G-désingularisation, Tohoku Math. J. 47 (1995), 125-149 Zbl0823.14006MR1311446
  3. W. Fulton, Introduction to toric varieties, 131 (1993), Princeton University Press, Princeton, NJ Zbl0813.14039MR1234037
  4. Y.-N. Gau, Embedded topological classification of quasi-ordinary singularities, Mem. Amer. Math. Soc. 74 (1988), 109-129 Zbl0658.14004MR954948
  5. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II, Annals of Math. 79 (1964), 109-326 Zbl0122.38603MR199184
  6. S. Ishii, The arc space of a toric variety, J. Algebra 278 (2004), 666-683 Zbl1073.14066MR2071659
  7. S. Ishii, Arcs, valuations and the Nash map, J. reine angew. Math 588 (2005), 71-92 Zbl1082.14007MR2196729
  8. S. Ishii, J. Kollár, The Nash problem on arc families of singularities, Duke Math. J. 120 (2003), 601-620 Zbl1052.14011MR2030097
  9. M. Lejeune-Jalabert, A. J. Reguera-Lopez, Arcs and wedges on sandwiched surface singularities, Amer. J. Math. 121 (1999), 1191-1213 Zbl0960.14015MR1719822
  10. J. Lipman, Quasi-ordinary singularities of embedded surfaces, (1965) 
  11. J. Lipman, Quasi-ordinary singularities of surfaces in C 3 , Singularities, Part 2 (Arcata, Calif., 1981) 40 (1983), 161-172, Amer. Math. Soc., Providence, RI Zbl0521.14014MR713245
  12. J. F. Nash, Arc structure of singularities, Duke Math. J. 81 (1995), 31-38 Zbl0880.14010MR1381967
  13. K. Oh, Topological types of quasi-ordinary singularities, Proc. AMS 117 (1993), 53-59 Zbl0791.32018MR1106181
  14. P. D. Gonález Pérez, Toric embedded resolutions of quasi-ordinary hypersurface singularities, Ann. Inst. Fourier (Grenoble) 53 (2003), 1819-1881 Zbl1052.32024MR2038781
  15. C. Plenat, P. Popescu-Pampu, A class of non-rational surface singularities for which the Nash map is bijective Zbl1119.14007
  16. A. J. Reguera, Image of Nash map in terms of wedges, C. R. Acad. Sci. Ser. I 338 (2004), 385-390 Zbl1044.14032MR2057169
  17. A. J. Reguera-Lopez, Families of arcs on rational surface singularities, Manuscr. Math. 88 (1995), 321-333 Zbl0867.14012MR1359701
  18. P. Vojta, Jets via Hasse-Schmidt derivations Zbl1194.13027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.