Toric embedded resolutions of quasi-ordinary hypersurface singularities
- [1] Université Paris VII, Institut de Mathématiques, UMR CNRS 7586, Équipe Géométrie et et Dynamique, Case 7012, 2 place Jussieu, 75251 Paris Cedex 05 (France)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 6, page 1819-1881
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGonzález Pérez, Pedro D.. "Toric embedded resolutions of quasi-ordinary hypersurface singularities." Annales de l’institut Fourier 53.6 (2003): 1819-1881. <http://eudml.org/doc/116086>.
@article{GonzálezPérez2003,
abstract = {We build two embedded resolution procedures of a quasi-ordinary singularity of complex
analytic hypersurface, by using toric morphisms which depend only on the characteristic
monomials associated to a quasi-ordinary projection of the singularity. This result
answers an open problem of Lipman in Equisingularity and simultaneous resolution of
singularities, Resolution of Singularities, Progress in Mathematics No. 181, 2000, 485-
503. In the first procedure the singularity is embedded as hypersurface. In the second
procedure, which is inspired by a work of Goldin and Teissier for plane curves (see
Resolving singularities of plane analytic branches with one toric morphism, loc. cit.,
pages 315-340), we re-embed the singularity in an affine space of bigger dimension in
such a way that one toric morphism provides its embedded resolution. We compare both
procedures and we show that they coincide under suitable hypothesis.},
affiliation = {Université Paris VII, Institut de Mathématiques, UMR CNRS 7586, Équipe Géométrie et et Dynamique, Case 7012, 2 place Jussieu, 75251 Paris Cedex 05 (France)},
author = {González Pérez, Pedro D.},
journal = {Annales de l’institut Fourier},
keywords = {singularities; embedded resolution; discriminant; topological type; embedded reolution},
language = {eng},
number = {6},
pages = {1819-1881},
publisher = {Association des Annales de l'Institut Fourier},
title = {Toric embedded resolutions of quasi-ordinary hypersurface singularities},
url = {http://eudml.org/doc/116086},
volume = {53},
year = {2003},
}
TY - JOUR
AU - González Pérez, Pedro D.
TI - Toric embedded resolutions of quasi-ordinary hypersurface singularities
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 6
SP - 1819
EP - 1881
AB - We build two embedded resolution procedures of a quasi-ordinary singularity of complex
analytic hypersurface, by using toric morphisms which depend only on the characteristic
monomials associated to a quasi-ordinary projection of the singularity. This result
answers an open problem of Lipman in Equisingularity and simultaneous resolution of
singularities, Resolution of Singularities, Progress in Mathematics No. 181, 2000, 485-
503. In the first procedure the singularity is embedded as hypersurface. In the second
procedure, which is inspired by a work of Goldin and Teissier for plane curves (see
Resolving singularities of plane analytic branches with one toric morphism, loc. cit.,
pages 315-340), we re-embed the singularity in an affine space of bigger dimension in
such a way that one toric morphism provides its embedded resolution. We compare both
procedures and we show that they coincide under suitable hypothesis.
LA - eng
KW - singularities; embedded resolution; discriminant; topological type; embedded reolution
UR - http://eudml.org/doc/116086
ER -
References
top- N. A' Campo, M. Oka, Geometry of plane curves via Tschirnhausen resolution tower, Osaka J. Math 33 (1996), 1003-1033 Zbl0904.14014MR1435467
- S.S. Abhyankar, On the ramification of algebraic functions., Amer. J. Math. 77 (1955), 575-592 Zbl0064.27501MR71851
- S.S. Abhyankar, Inversion and invariance of characteristic pairs, Amer. J. Math 89 (1967), 363-372 Zbl0162.34103MR220732
- S.S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Instit. Fund. Research, Bombay (1977) Zbl0818.14001
- S.S. Abhyankar, T. Moh, Newton-Puiseux Expansion and Generalized Tschirnhausen Transformation I-II, J. reine angew. Math 260 (1973), 47-83 Zbl0272.12102MR337955
- C. Ban, L. McEwan, Canonical resolution of a quasi-ordinary surface singularity, Canad. J. Math. 52 (2000), 1149-1163 Zbl1002.14003MR1794300
- W. Barth, C. Peters, A. Van de Ven, Compact Complex Surfaces, (1984), Springer-Verlag Zbl0718.14023MR749574
- N. Bourbaki, Algebre commutative, Chap. I-IV (1981), Masson Zbl0498.12001MR643362
- A. Campillo, Algebroid Curves in positive characteristic, 813 (1980), Springer, Berlin Zbl0451.14010MR584440
- D. Cox, Toric Varieties and Toric Resolutions, Resolution of Singularities. A research textbook in tribute to Oscar Zariski 181 (2000), 259-283, Birkhäuser-Verlag Zbl0969.14035
- H. Eggers, Polarinvarianten und die Topologie von Kurvensingularitaten, Bonner Mathematische Schriften 147 (1983) Zbl0559.14018MR701391
- G. Ewald, Combinatorial Convexity and Algebraic Geometry, (1996), Springer-Verlag Zbl0869.52001MR1418400
- W. Fulton, Introduction to Toric Varieties, 131 (1993), Princeton University Press Zbl0813.14039MR1234037
- E.R. García, Barroso, Invariants des singularités de courbes planes et courbure des fibres de Milnor, (1996)
- E.R. García, Barroso, Sur les courbes polaires d'une courbe plane réduite, Proc. London Math. Soc 81 (2000), 1-28 Zbl1041.14008MR1756330
- E.R. García, Barroso, P.D. González, Pérez, Decomposition in bunches of the critical locus of a quasi-ordinary map (submitted). Zbl1079.14059
- Y-N. Gau, Embedded Topological classification of quasi-ordinary singularities, Memoirs of the American Mathematical Society 388 (1988) Zbl0658.14004MR954948
- J. Gwoździewicz, A. Ploski, On the Approximate Roots of Polynomials, Annales Polonici Mathematici LX (1995), 199-210 Zbl0826.13012MR1316488
- R. Goldin, B. Teissier, Resolving singularities of plane analytic branches with one toric morphism, Resolution of Singularities. A research textbook in tribute to Oscar Zariski. 181 (2000), 315-340, Birkhäuser-Verlag Zbl0995.14002
- P.D. González, Pérez, Singularités quasi-ordinaires toriques et polyèdre de Newton du discriminant, Canadian J. Math. 52 (2000), 348-368 Zbl0970.14027MR1755782
- P.D. González, Pérez, Quasi-ordinary singularities via toric geometry, (2000) Zbl0970.14027
- P.D. González, Pérez, The semigroup of a quasi-ordinary hypersurface Zbl1036.32020MR1990220
- P.D. González, Pérez, L.J. Mc, Ewan, A. Némethi, The zeta function of a quasi-ordinary singularity II Zbl1080.14002MR1986117
- P.D. González, Pérez, B. Teissier, Toric embedded resolution of non necessarily normal toric varieties, to appear in C. R. Acad. Sci. Paris, Sér. I Math. Zbl1052.14062
- G. Gonzalez-Sprinberg, M. Lejeune-Jalabert, Modèles canoniques plongés. I, Kodai Math. J. 14 (1991), 194-209 Zbl0772.14008MR1123416
- H.W.E. Jung, Darstellung der Funktionen eines algebraischen Körpers zweier unabhaängigen Veränderlichen , in der Umgebung einer stelle , , J. reine angew. Math. 133 (1908), 289-314
- G. Kempf, F. Knudsen, D. Mumford, B. St-Donat, Toroidal Embeddings, 339 (1973), Springer Verlag Zbl0271.14017
- A.G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Inv. Mat 32 (1976), 1-31 Zbl0328.32007MR419433
- H. Laufer, Normal two dimensional singularities, 71 (1971), Princenton University Press Zbl0245.32005MR320365
- J. Lipman, Quasi-ordinary singularities of embedded surfaces, (1965)
- J. Lipman, Introduction to Resolution of Singularities, Proceedings of Symposia in Pure Mathematics 29 (1975), 187-230 Zbl0306.14007MR389901
- J. Lipman, Quasi-ordinary singularities of surfaces in , Proceedings of Symposia in Pure Mathematics 40 (1983), 161-172 Zbl0521.14014MR713245
- J. Lipman, Topological invariants of quasi-ordinary singularities, Memoirs of the American Mathematical Society 388 (1988) Zbl0658.14003MR954947
- J. Lipman, Equisingularity and simultaneous resolution of singularities, Resolution of Singularities. A research textbook in tribute to Oscar Zariski. 181 (2000), 485-503, Birkhäuser-Verlag Zbl0970.14011
- I. Luengo, On the structure of embedded algebroid surfaces, Proceedings of Symposia in Pure Mathematics 40 (1983), 185-193 Zbl0527.14032MR713247
- D.T. Lê, M. Oka, On resolution complexity of plane curves, Kodaira Math. J 18 (1995), 1-36 Zbl0844.14010MR1317003
- D.T. Lê, F. Michel, C. Weber, Sur le comportement des polaires associées aux germes de courbes planes, Compositio Math. 72 (1989), 87-113 Zbl0705.32021MR1026330
- M. Lejeune-Jalabert, Sur l’équivalence des singularités des courbes algebroïdes planes (coefficients de Newton), Introduction à la théorie des singularités I (1988), 49-154, Hermann, Paris Zbl0699.14036
- M. Lejeune-Jalabert, A. Reguera López, Arcs and wedges on sandwiched surface singularities, Amer. J. Math 121 (1999), 1191-1213 Zbl0960.14015MR1719822
- M. Lejeune-Jalabert, A. Reguera López, Desingularization of both a plane branch and its monomial curve , (2000)
- L.J. McEwan, A. Némethi, The zeta function of a quasi-ordinary singularity I Zbl1066.14004MR1986117
- M. Merle, Invariants polaires des courbes planes, Inv. Math. 41 (1977), 103-111 Zbl0371.14003MR460336
- D. Mumford, The Red Book on Varieties and Schemes, 1358 (1988), Springer-Verlag Zbl0658.14001MR971985
- T. Oda, Convex Bodies and Algebraic Geometry, 131 (1988), Springer-Verlag Zbl0628.52002MR922894
- M. Oka, Geometry of plane curves via toroidal resolution, Algebraic Geometry and Singularities 139 (1996), Birkhäuser, Basel Zbl0857.14014
- P. Popescu-Pampu, Approximate roots, Valuation Theory and its Applications vol. II Zbl1036.13017
- P. Popescu-Pampu, Arbres de contact des singularités quasi-ordinaires et graphes d'adjacence pour les 3-variétés réelles, (2001)
- J.E. Reeve, A summary of results on the topological classification of plane algebroid singularities, Rend. Sem. Mat. Univ. e Politec. Torino (1954-55) 14, 159-187 Zbl0067.12904
- B. Sturmfels, Gröbner Bases and Convex Polytopes, Vol 8 (1996), American Mathematical Society Zbl0856.13020MR1363949
- B. Teissier, The monomial curve and its deformations. Appendix in [Z6]
- B. Teissier, Valuations, Deformations and Toric Geometry, Valuation Theory and its Applications. vol. II Zbl1061.14016
- O. Villamayor, Constructiveness of Hironaka's resolution., Ann. Sci. Ecole Norm. Sup. (4) 22 (1989), 1-32 Zbl0675.14003MR985852
- O. Villamayor, On Equiresolution and a question of Zariski, Acta Math 185 (2000), 123-159 Zbl0989.32004MR1794188
- C.T.C. Wall, Chains on the Eggers tree and polar curves, Revista Mat. Iberoamericana 19 (2003), 1-10 Zbl1057.14032MR2023205
- R.J. Walker, Reduction of the Singularities of an Algebraic Surface, Annals of Maths 36 (1935), 336-365 Zbl61.0705.02MR1503227
- O. Zariski, Le probléme de la réduction des singularités d'une variété algébrique, Bull. Sci. Mathématiques 78 (1954), 31-40 Zbl0055.38802MR62474
- O. Zariski, The connectedness theorem for birrational transformations, Algebraic Geometry and Topology (Symposium in honor of S. Lefschetz) (1955), 182-188, Princenton University Press Zbl0087.35601
- O. Zariski, Studies in Equisingularity. I., Amer. J. Math. 87 (1965), 507-536 Zbl0132.41601MR177985
- O. Zariski, Exceptional Singularities of an Algebroid Surface and their Reduction, Atti. Accad. Naz. Lincei Rend., Cl. Sci. Fis. Mat. Natur. (8) 43 (1967), 135-146 Zbl0168.18903MR229648
- O. Zariski, Le problème des modules pour les branches planes, (1986), Hermann, Paris Zbl0592.14010MR861277
- S.S. Abhyankar, T. Moh, Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II., J. Reine Angew. Math. 261 (1973), 29-54 Zbl0272.12102MR337955
- O. Zariski, Contributions to the problem of equisingularity, Questions on Algebraic varieties. (C.I.M.E., III ciclo, Varenna 7-17 Settembre 1969) (1970), 261-343, Roma Zbl0204.54503
- O. Zariski, Studies in equisingularity. II., Amer. J. Math. 87 (1965), 972-1006 Zbl0146.42502MR191898
- O. Zariski, Collected Papers IV (1979)
- O. Zariski, Collected papers I (1979)
- O. Zariski, Collected papers IV (1979)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.