# Relative property (T) and linear groups

Talia Fernós^{[1]}

- [1] University of Illinois at Chicago Dept. of MSCS (m/c 249) 851 South Morgan Street Chicago, IL 60607-7045 (USA)

Annales de l’institut Fourier (2006)

- Volume: 56, Issue: 6, page 1767-1804
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topFernós, Talia. "Relative property (T) and linear groups." Annales de l’institut Fourier 56.6 (2006): 1767-1804. <http://eudml.org/doc/10191>.

@article{Fernós2006,

abstract = {Relative property (T) has recently been used to show the existence of a variety of new rigidity phenomena, for example in von Neumann algebras and the study of orbit-equivalence relations. However, until recently there were few examples of group pairs with relative property (T) available through the literature. This motivated the following result: A finitely generated group $\Gamma $ admits a special linear representation with non-amenable $R$-Zariski closure if and only if it acts on an Abelian group $A$ (of finite nonzero $Q$-rank) so that the corresponding group pair $(\Gamma \ltimesA,A)$ has relative property (T).The proof is constructive. The main ingredients are Furstenberg’s celebrated lemma about invariant measures on projective spaces and the spectral theorem for the decomposition of unitary representations of Abelian groups. Methods from algebraic group theory, such as the restriction of scalars functor, are also employed.},

affiliation = {University of Illinois at Chicago Dept. of MSCS (m/c 249) 851 South Morgan Street Chicago, IL 60607-7045 (USA)},

author = {Fernós, Talia},

journal = {Annales de l’institut Fourier},

keywords = {Relative property (T); group extensions; linear algebraic groups; relative property (T)},

language = {eng},

number = {6},

pages = {1767-1804},

publisher = {Association des Annales de l’institut Fourier},

title = {Relative property (T) and linear groups},

url = {http://eudml.org/doc/10191},

volume = {56},

year = {2006},

}

TY - JOUR

AU - Fernós, Talia

TI - Relative property (T) and linear groups

JO - Annales de l’institut Fourier

PY - 2006

PB - Association des Annales de l’institut Fourier

VL - 56

IS - 6

SP - 1767

EP - 1804

AB - Relative property (T) has recently been used to show the existence of a variety of new rigidity phenomena, for example in von Neumann algebras and the study of orbit-equivalence relations. However, until recently there were few examples of group pairs with relative property (T) available through the literature. This motivated the following result: A finitely generated group $\Gamma $ admits a special linear representation with non-amenable $R$-Zariski closure if and only if it acts on an Abelian group $A$ (of finite nonzero $Q$-rank) so that the corresponding group pair $(\Gamma \ltimesA,A)$ has relative property (T).The proof is constructive. The main ingredients are Furstenberg’s celebrated lemma about invariant measures on projective spaces and the spectral theorem for the decomposition of unitary representations of Abelian groups. Methods from algebraic group theory, such as the restriction of scalars functor, are also employed.

LA - eng

KW - Relative property (T); group extensions; linear algebraic groups; relative property (T)

UR - http://eudml.org/doc/10191

ER -

## References

top- H. Bass, J. Milnor, J.-P. Serre, Solution of the congruence subgroup problem for ${\mathrm{SL}}_{n}\phantom{\rule{0.166667em}{0ex}}(n\ge 3)$ and ${\mathrm{Sp}}_{2n}\phantom{\rule{0.166667em}{0ex}}(n\ge 2)$, Inst. Hautes Études Sci. Publ. Math. (1967), 59-137 Zbl0174.05203MR244257
- Hyman Bass, Groups of integral representation type, Pacific Journal of Math. 86 (1980), 15-51 Zbl0444.20006MR586867
- A. Borel, J. Tits, Groupes réductifs, Publ. Math. IHÉS 27 (1965), 55-150 Zbl0145.17402MR207712
- Armand Borel, Linear algebraic groups, (1991), Springer-Verlag Zbl0726.20030MR1102012
- Marc Burger, Kazhdan constants for $S{L}_{3}\left(\mathbb{Z}\right)$, J. reine angew. Math. 413 (1991), 36-67 Zbl0704.22009MR1089795
- Damien Gaboriau, Sorin Popa, An uncountable family of non-orbit equivalen actions of ${F}_{n}$, (2003) Zbl1155.37302
- Larry Joel Goldstein, Analytic number theory, (1971), Prentice-Hall, Englewood Cliffs, New Jersey Zbl0226.12001MR498335
- Pierre de la Harpe, Alain Valette, La propriété (T) de Kazhdan pour les groupes localement compacts, Asterisque 175 (1989), 1-157 Zbl0759.22001
- G. Hochschild, The structure of Lie groups, (1965), Holden-Day Inc., San Francisco Zbl0131.02702MR207883
- James E. Humphreys, Linear Algebraic Groups, (1998), Springer Zbl0471.20029MR396773
- P. Jolissaint, Borel cocycles, approximation properties and relative property (T), Ergod. Th. & Dynam. Sys. 20 (2000), 483-499 Zbl0955.22008MR1756981
- Martin Kassabov, Nikolay Nikolov, Universal lattices and property $\tau $, (2004) Zbl1139.19003
- D. Kazhdan, Connection of the dual space of a group with the structure of its closed subgroups, Functional Analysis and its Applications 1 (1967), 63-65 Zbl0168.27602MR209390
- Alexander Lubotzky, Shahar Mozes, M. S. Raghunathan, The word and Riemannian metrics on lattices of semisimple groups, Inst. Hautes Études Sci. Publ. Math. (2000), 5-53 (2001) Zbl0988.22007MR1828742
- George W. Mackey, A theorem of Stone and von Neumann, Duke Math. J. 16 (1949), 313-326 Zbl0036.07703MR30532
- George W. Mackey, Induced representations of locally compact groups, I, Ann. of Math. (2) 55 (1952), 101-139 Zbl0046.11601MR44536
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, 17 (1991), Springer-Verlag, Berlin Zbl0732.22008MR1090825
- G.A. Margulis, Explicit constructions of concentrators, Problems Information Transmission 9 (1973), 325-332 Zbl0312.22011MR484767
- Andrés Navas, Quelques nouveaux phénomènes de rang 1 pour les groupes de difféomorphismes du cercle, Comment. Math. Helv. 80 (2005), 355-375 Zbl1080.57002MR2142246
- Sorin Popa, On a class of type II${}_{1}$ factors with Betti numbers invariants, (2003) MR1867564
- Sorin Popa, Strong rigidity of II${}_{1}$ factors arising from malleable actions of w-rigid groups, Part I, (2003)
- Sorin Popa, Some computations of 1-cohomology groups and constructions of non-orbit equivalent actions, (2004) Zbl1092.37003
- Y. Shalom, Measurable group theory, (2005) Zbl1137.37301MR2185757
- Yehuda Shalom, Bounded generation and Kazhdan’s property (T), Inst. Hautes Études Sci. Publ. Math. (1999), 145-168 (2001) Zbl0980.22017MR1813225
- T.A. Springer, Linear algebraic groups, 2nd edition, (1998), Birkhäuser Zbl0927.20024MR1642713
- A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 235-252, 477 Zbl0378.13002MR472792
- J. Tits, Classification of algebraic semisimple groups in algebraic groups and discrete subgroups, (1966), Proc. Symp. Pure Math. IX Amer. Math. Soc. Zbl0238.20052MR224710
- Asger Törnquist, Orbit equivalence and ${F}_{n}$ actions, (2004) Zbl1100.03040
- Alain Valette, Group pairs with property (T), from arithmetic lattices, Geom. Dedicata 112 (2005), 183-196 Zbl1076.22012MR2163898
- P. S. Wang, On isolated points in the dual spaces of locally compact groups, Mathematische Annalen 218 (1975), 19-34 Zbl0332.22009MR384993
- H. Whitney, Elementary structure of real algebraic varieties, The Annals of Mathematics 66 (1957), 545-556 Zbl0078.13403MR95844
- R.J. Zimmer, Ergodic theory and semisimple groups, (1984), Birkhäuser Zbl0571.58015MR776417

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.