Relative Kazhdan property

Yves de Cornulier

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 2, page 301-333
  • ISSN: 0012-9593

How to cite

top

de Cornulier, Yves. "Relative Kazhdan property." Annales scientifiques de l'École Normale Supérieure 39.2 (2006): 301-333. <http://eudml.org/doc/82686>.

@article{deCornulier2006,
author = {de Cornulier, Yves},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {2},
pages = {301-333},
publisher = {Elsevier},
title = {Relative Kazhdan property},
url = {http://eudml.org/doc/82686},
volume = {39},
year = {2006},
}

TY - JOUR
AU - de Cornulier, Yves
TI - Relative Kazhdan property
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 2
SP - 301
EP - 333
LA - eng
UR - http://eudml.org/doc/82686
ER -

References

top
  1. [1] Akemann C.A., Walter M.E., The Riemann–Lebesgue property for arbitrary locally compact groups, Duke Math. J.43 (1976) 225-236. Zbl0328.43008MR399757
  2. [2] Akemann C.A., Walter M.E., Unbounded negative definite functions, Canad. J. Math.33 (4) (1981) 862-871. Zbl0437.22004MR634144
  3. [3] Bekka B., de la Harpe P., Valette A., Kazhdan's Property (T), Forthcoming book, currently available at, http://name.math.univ-rennes1.fr/bachir.bekka/. 
  4. [4] Bekka B., Louvet N., On a variant of Kazhdan's Property (T) for subgroups of semisimple groups, Ann. Inst. Fourier47 (4) (1997) 1065-1078. Zbl0874.22006MR1488244
  5. [5] Borel A., Serre J.-P., Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv.39 (1964) 111-164. Zbl0143.05901MR181643
  6. [6] Borel A., Tits J., Groupes réductifs, Publ. Math. Inst. Hautes Études Sci.27 (1965) 55-151. Zbl0145.17402MR207712
  7. [7] Bridson M.R., Haefliger A., Metric Spaces of Non-Positive Curvature, Springer, Berlin, 1999. Zbl0988.53001MR1744486
  8. [8] Brown K.S., Buildings, Springer, Berlin, 1989. Zbl0715.20017MR969123
  9. [9] Burger M., Kazhdan constants for SL 3 Z , J. Reine Angew. Math.431 (1991) 36-67. Zbl0704.22009MR1089795
  10. [10] Cherix P.-A., Cowling M., Jolissaint P., Julg P., Valette A., Groups with the Haagerup Property, Progress in Mathematics, vol. 197, Birkhäuser, Basel, 2001. Zbl1030.43002MR1852148
  11. [11] Comfort W.W., Topological groups, in: Kunen K., Vaughan J.E. (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 1143-1263. Zbl0604.22002MR776643
  12. [12] de Cornulier Y., Kazhdan and Haagerup Properties in algebraic groups over local fields, J. Lie Theory16 (2006) 67-82. Zbl1161.22011MR2196414
  13. [13] de Cornulier Y., Strongly bounded groups and infinite powers of finite groups, Comm. Algebra, in press. Zbl1125.20023
  14. [14] de Cornulier Y., On Haagerup and Kazhdan Properties, Thèse sciences, École Polytechnique Fédérale de Lausanne, No 3438 (2005). 
  15. [15] de Cornulier Y., Tessera R., Valette A., Isometric group actions on Hilbert spaces: growth of cocycles, Preprint No 3438, 2005. Zbl1129.22004
  16. [16] Delaroche C., Kirillov A., Sur les relations entre l'espace dual d'un groupe et la structure de ses sous-groupes fermés (d'après Kajdan), Sém. Bourbaki, 20e année, 1967–1968, No 343, 1968. Zbl0214.04602
  17. [17] Dixmier J., Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1969. Zbl0174.18601MR246136
  18. [18] Faraut J., Harzallah K., Distances hilbertiennes invariantes sur un espace homogène, Ann. Inst. Fourier24 (3) (1974) 171-217. Zbl0265.43013MR365042
  19. [19] Fernós T., Relative Property (T) and linear groups, arXiv, math.GR/0411527, Ann. Inst. Fourier, in press. Zbl1175.22004MR2282675
  20. [20] Furstenberg H., A note on Borel's density theorem, Proc. Amer. Math. Soc.55 (1976) 209-212. Zbl0319.22010MR422497
  21. [21] Guentner E., Higson N., Weinberger S., The Novikov Conjecture for linear groups, Publ. Math. Inst. Hautes Études Sci.101 (2005) 243-268. Zbl1073.19003MR2217050
  22. [22] de la Harpe P., Valette A., La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque, vol. 175, SMF, Paris, 1989. Zbl0759.22001
  23. [23] Jolissaint P., On Property (T) for pairs of topological groups, Enseign. Math. (2)51 (2005) 31-45. Zbl1106.22006MR2154620
  24. [24] Kazhdan D., Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl.1 (1967) 63-65. Zbl0168.27602MR209390
  25. [25] Lafforgue V., Une remarque sur les fonctions conditionnellement de type négatif, C. R. Acad. Sci., in press. Zbl1089.22005
  26. [26] Lubotzky A., Zimmer R., Variants of Kazhdan's property for subgroups of semisimple groups, Israel J. Math.66 (1989) 289-298. Zbl0706.22010MR1017168
  27. [27] Lubotzky A., Żuk A., On Property (τ), Forthcoming book, 2005. 
  28. [28] Margulis G., Finitely-additive invariant measures on Euclidean spaces, Ergodic Theory Dynam. Systems2 (3–4) (1982) 383-396. Zbl0532.28012MR721730
  29. [29] Margulis G., Discrete Subgroups of Semisimple Lie Groups, Springer, Berlin, 1991. Zbl0732.22008MR1090825
  30. [30] Martin F., Reduced 1-cohomology of connected locally compact groups and applications, J. Lie Theory16 (2006) 311-328. Zbl1115.22006MR2197595
  31. [31] Montgomery D., Zippin L., Topological Transformation Groups, Interscience, New York, 1955. Zbl0068.01904MR73104
  32. [32] Niblo G., Reeves L., Groups acting on CAT(0) cube complexes, Geom. Topology1 (1997) 1-7. Zbl0887.20016MR1432323
  33. [33] Peterson J., Popa S., On the notion of relative property (T) for inclusions of von Neumann algebras, J. Funct. Anal.219 (2005) 469-483. Zbl1066.46050MR2109260
  34. [34] Popa S., Strong rigidity of II 1 factors arising from malleable actions of w-rigid groups, II, math.OA/0407103, Invent. Math., in press. Zbl1120.46044MR2231962
  35. [35] Shalom Y., Bounded generation and Kazhdan's property (T), Publ. Math. Inst. Hautes Études Sci.90 (1999) 145-168. Zbl0980.22017MR1813225
  36. [36] Shalom Y., Invariant measures for algebraic actions, Zariski dense subgroups and Kazhdan's property (T), Trans. Amer. Math. Soc.351 (1999) 3387-3412. Zbl0932.22007MR1615966
  37. [37] Shalom Y., Rigidity of commensurators and irreducible lattices, Invent. Math.141 (1) (2000) 1-54. Zbl0978.22010MR1767270
  38. [38] Tessera R., Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces, Preprint, 2006. MR2273664
  39. [39] Valette A., Group pairs with property (T), from arithmetic lattices, Geom. Dedicata112 (1) (2005) 183-196. Zbl1076.22012MR2163898
  40. [40] Wang S.P., On the Mautner phenomenon and groups with property (T), Amer. J. Math.104 (6) (1982) 1191-1210. Zbl0507.22011MR681733

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.