Relative Kazhdan property

Yves de Cornulier

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 2, page 301-333
  • ISSN: 0012-9593

How to cite

top

de Cornulier, Yves. "Relative Kazhdan property." Annales scientifiques de l'École Normale Supérieure 39.2 (2006): 301-333. <http://eudml.org/doc/82686>.

@article{deCornulier2006,
author = {de Cornulier, Yves},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {2},
pages = {301-333},
publisher = {Elsevier},
title = {Relative Kazhdan property},
url = {http://eudml.org/doc/82686},
volume = {39},
year = {2006},
}

TY - JOUR
AU - de Cornulier, Yves
TI - Relative Kazhdan property
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 2
SP - 301
EP - 333
LA - eng
UR - http://eudml.org/doc/82686
ER -

References

top
  1. [1] Akemann C.A., Walter M.E., The Riemann–Lebesgue property for arbitrary locally compact groups, Duke Math. J.43 (1976) 225-236. Zbl0328.43008MR399757
  2. [2] Akemann C.A., Walter M.E., Unbounded negative definite functions, Canad. J. Math.33 (4) (1981) 862-871. Zbl0437.22004MR634144
  3. [3] Bekka B., de la Harpe P., Valette A., Kazhdan's Property (T), Forthcoming book, currently available at, http://name.math.univ-rennes1.fr/bachir.bekka/. 
  4. [4] Bekka B., Louvet N., On a variant of Kazhdan's Property (T) for subgroups of semisimple groups, Ann. Inst. Fourier47 (4) (1997) 1065-1078. Zbl0874.22006MR1488244
  5. [5] Borel A., Serre J.-P., Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv.39 (1964) 111-164. Zbl0143.05901MR181643
  6. [6] Borel A., Tits J., Groupes réductifs, Publ. Math. Inst. Hautes Études Sci.27 (1965) 55-151. Zbl0145.17402MR207712
  7. [7] Bridson M.R., Haefliger A., Metric Spaces of Non-Positive Curvature, Springer, Berlin, 1999. Zbl0988.53001MR1744486
  8. [8] Brown K.S., Buildings, Springer, Berlin, 1989. Zbl0715.20017MR969123
  9. [9] Burger M., Kazhdan constants for SL 3 Z , J. Reine Angew. Math.431 (1991) 36-67. Zbl0704.22009MR1089795
  10. [10] Cherix P.-A., Cowling M., Jolissaint P., Julg P., Valette A., Groups with the Haagerup Property, Progress in Mathematics, vol. 197, Birkhäuser, Basel, 2001. Zbl1030.43002MR1852148
  11. [11] Comfort W.W., Topological groups, in: Kunen K., Vaughan J.E. (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 1143-1263. Zbl0604.22002MR776643
  12. [12] de Cornulier Y., Kazhdan and Haagerup Properties in algebraic groups over local fields, J. Lie Theory16 (2006) 67-82. Zbl1161.22011MR2196414
  13. [13] de Cornulier Y., Strongly bounded groups and infinite powers of finite groups, Comm. Algebra, in press. Zbl1125.20023
  14. [14] de Cornulier Y., On Haagerup and Kazhdan Properties, Thèse sciences, École Polytechnique Fédérale de Lausanne, No 3438 (2005). 
  15. [15] de Cornulier Y., Tessera R., Valette A., Isometric group actions on Hilbert spaces: growth of cocycles, Preprint No 3438, 2005. Zbl1129.22004
  16. [16] Delaroche C., Kirillov A., Sur les relations entre l'espace dual d'un groupe et la structure de ses sous-groupes fermés (d'après Kajdan), Sém. Bourbaki, 20e année, 1967–1968, No 343, 1968. Zbl0214.04602
  17. [17] Dixmier J., Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1969. Zbl0174.18601MR246136
  18. [18] Faraut J., Harzallah K., Distances hilbertiennes invariantes sur un espace homogène, Ann. Inst. Fourier24 (3) (1974) 171-217. Zbl0265.43013MR365042
  19. [19] Fernós T., Relative Property (T) and linear groups, arXiv, math.GR/0411527, Ann. Inst. Fourier, in press. Zbl1175.22004MR2282675
  20. [20] Furstenberg H., A note on Borel's density theorem, Proc. Amer. Math. Soc.55 (1976) 209-212. Zbl0319.22010MR422497
  21. [21] Guentner E., Higson N., Weinberger S., The Novikov Conjecture for linear groups, Publ. Math. Inst. Hautes Études Sci.101 (2005) 243-268. Zbl1073.19003MR2217050
  22. [22] de la Harpe P., Valette A., La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque, vol. 175, SMF, Paris, 1989. Zbl0759.22001
  23. [23] Jolissaint P., On Property (T) for pairs of topological groups, Enseign. Math. (2)51 (2005) 31-45. Zbl1106.22006MR2154620
  24. [24] Kazhdan D., Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl.1 (1967) 63-65. Zbl0168.27602MR209390
  25. [25] Lafforgue V., Une remarque sur les fonctions conditionnellement de type négatif, C. R. Acad. Sci., in press. Zbl1089.22005
  26. [26] Lubotzky A., Zimmer R., Variants of Kazhdan's property for subgroups of semisimple groups, Israel J. Math.66 (1989) 289-298. Zbl0706.22010MR1017168
  27. [27] Lubotzky A., Żuk A., On Property (τ), Forthcoming book, 2005. 
  28. [28] Margulis G., Finitely-additive invariant measures on Euclidean spaces, Ergodic Theory Dynam. Systems2 (3–4) (1982) 383-396. Zbl0532.28012MR721730
  29. [29] Margulis G., Discrete Subgroups of Semisimple Lie Groups, Springer, Berlin, 1991. Zbl0732.22008MR1090825
  30. [30] Martin F., Reduced 1-cohomology of connected locally compact groups and applications, J. Lie Theory16 (2006) 311-328. Zbl1115.22006MR2197595
  31. [31] Montgomery D., Zippin L., Topological Transformation Groups, Interscience, New York, 1955. Zbl0068.01904MR73104
  32. [32] Niblo G., Reeves L., Groups acting on CAT(0) cube complexes, Geom. Topology1 (1997) 1-7. Zbl0887.20016MR1432323
  33. [33] Peterson J., Popa S., On the notion of relative property (T) for inclusions of von Neumann algebras, J. Funct. Anal.219 (2005) 469-483. Zbl1066.46050MR2109260
  34. [34] Popa S., Strong rigidity of II 1 factors arising from malleable actions of w-rigid groups, II, math.OA/0407103, Invent. Math., in press. Zbl1120.46044MR2231962
  35. [35] Shalom Y., Bounded generation and Kazhdan's property (T), Publ. Math. Inst. Hautes Études Sci.90 (1999) 145-168. Zbl0980.22017MR1813225
  36. [36] Shalom Y., Invariant measures for algebraic actions, Zariski dense subgroups and Kazhdan's property (T), Trans. Amer. Math. Soc.351 (1999) 3387-3412. Zbl0932.22007MR1615966
  37. [37] Shalom Y., Rigidity of commensurators and irreducible lattices, Invent. Math.141 (1) (2000) 1-54. Zbl0978.22010MR1767270
  38. [38] Tessera R., Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces, Preprint, 2006. MR2273664
  39. [39] Valette A., Group pairs with property (T), from arithmetic lattices, Geom. Dedicata112 (1) (2005) 183-196. Zbl1076.22012MR2163898
  40. [40] Wang S.P., On the Mautner phenomenon and groups with property (T), Amer. J. Math.104 (6) (1982) 1191-1210. Zbl0507.22011MR681733

NotesEmbed ?

top

You must be logged in to post comments.