The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the Fundamental Group of self-affine plane Tiles”

The higher transvectants are redundant

Abdelmalek Abdesselam, Jaydeep Chipalkatti (2009)

Annales de l’institut Fourier

Similarity:

Let A , B denote generic binary forms, and let 𝔲 r = ( A , B ) r denote their r -th transvectant in the sense of classical invariant theory. In this paper we classify all the quadratic syzygies between the { 𝔲 r } . As a consequence, we show that each of the higher transvectants { 𝔲 r : r 2 } is redundant in the sense that it can be completely recovered from 𝔲 0 and 𝔲 1 . This result can be geometrically interpreted in terms of the incomplete Segre imbedding. The calculations rely upon the Cauchy exact sequence of S L 2 -representations,...

Billiard complexity in the hypercube

Nicolas Bedaride, Pascal Hubert (2007)

Annales de l’institut Fourier

Similarity:

We consider the billiard map in the hypercube of d . We obtain a language by coding the billiard map by the faces of the hypercube. We investigate the complexity function of this language. We prove that n 3 d - 3 is the order of magnitude of the complexity.

On the Number of Partitions of an Integer in the m -bonacci Base

Marcia Edson, Luca Q. Zamboni (2006)

Annales de l’institut Fourier

Similarity:

For each m 2 , we consider the m -bonacci numbers defined by F k = 2 k for 0 k m - 1 and F k = F k - 1 + F k - 2 + + F k - m for k m . When m = 2 , these are the usual Fibonacci numbers. Every positive integer n may be expressed as a sum of distinct m -bonacci numbers in one or more different ways. Let R m ( n ) be the number of partitions of n as a sum of distinct m -bonacci numbers. Using a theorem of Fine and Wilf, we obtain a formula for R m ( n ) involving sums of binomial coefficients modulo 2 . In addition we show that this formula may be used to determine the...

Tilings associated with non-Pisot matrices

Maki Furukado, Shunji Ito, E. Arthur Robinson (2006)

Annales de l’institut Fourier

Similarity:

Suppose A G l d ( ) has a 2-dimensional expanding subspace E u , satisfies a regularity condition, called “good star”, and has A * 0 , where A * is an of A . A morphism θ of the free group on { 1 , 2 , , d } is called a of A if it has structure matrix A . We show that there is a Θ whose “boundary substitution” θ = Θ is a non-abelianization of A . Such a tiling substitution Θ leads to a self-affine tiling of E u 2 with A u : = A | E u G L 2 ( ) as its expansion. In the last section we find conditions on A so that A * has no negative entries. ...