A generalization of the reciprocity law of multiple Dedekind sums
- [1] Nagoya University Graduate School of Mathemactics Chikusa-ku, Nagoya 464-8602 (Japan)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 2, page 361-377
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAsano, Masahiro. "A generalization of the reciprocity law of multiple Dedekind sums." Annales de l’institut Fourier 57.2 (2007): 361-377. <http://eudml.org/doc/10225>.
@article{Asano2007,
abstract = {Various multiple Dedekind sums were introduced by B.C.Berndt, L.Carlitz, S.Egami, D.Zagier and A.Bayad.In this paper, noticing the Jacobi form in Bayad [4], the cotangent function in Zagier [23], Egami’s result on cotangent functions [14] and their reciprocity laws, we study a special case of the Jacobi forms in Bayad [4] and deduce a generalization of Egami’s result on cotangent functions and a generalization of Zagier’s result. Further, we consider their reciprocity laws.},
affiliation = {Nagoya University Graduate School of Mathemactics Chikusa-ku, Nagoya 464-8602 (Japan)},
author = {Asano, Masahiro},
journal = {Annales de l’institut Fourier},
keywords = {Dedekind sums; reciprocity law; Jacobi forms},
language = {eng},
number = {2},
pages = {361-377},
publisher = {Association des Annales de l’institut Fourier},
title = {A generalization of the reciprocity law of multiple Dedekind sums},
url = {http://eudml.org/doc/10225},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Asano, Masahiro
TI - A generalization of the reciprocity law of multiple Dedekind sums
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 2
SP - 361
EP - 377
AB - Various multiple Dedekind sums were introduced by B.C.Berndt, L.Carlitz, S.Egami, D.Zagier and A.Bayad.In this paper, noticing the Jacobi form in Bayad [4], the cotangent function in Zagier [23], Egami’s result on cotangent functions [14] and their reciprocity laws, we study a special case of the Jacobi forms in Bayad [4] and deduce a generalization of Egami’s result on cotangent functions and a generalization of Zagier’s result. Further, we consider their reciprocity laws.
LA - eng
KW - Dedekind sums; reciprocity law; Jacobi forms
UR - http://eudml.org/doc/10225
ER -
References
top- M. F. Atiyah, F. Hirzebruch, Riemann-Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc. 65 (1959), 276-281 Zbl0142.40901MR110106
- M. F. Atiyah, F. Hirzebruch, Cohomologie-operationen und charakteristische klassen, Math. Z. 77 (1961), 149-187 Zbl0109.16002MR156361
- M. F. Atiyah, I. M. Singer, The index of elliptic operators, Ann. of Math. 87 (1968), 546-604 Zbl0164.24301MR236952
- A. Bayad, Sommes de Dedekind elliptiques et formes de Jacobi, Ann. Inst. Fourier 51 (2001), 29-42 Zbl1034.11030MR1821066
- A. Bayad, G. Robert, Amélioration d’une congruence pour certains éléments de Stickelberger quadratiques, Bull. Soc. Math. France 125 (1997), 249-267 Zbl0895.11021MR1478032
- A. Bayad, G. Robert, Note sur une forme de Jacobi méromorphe, C.R.A.S. 325 (1997), 455-460 Zbl0885.11035MR1692306
- M. Beck, Dedekind cotangent sums, Acta Arith. 109 (2003), 109-130 Zbl1061.11043MR1980640
- B. C. Berndt, Reciprocity theorems for Dedekind sums and generalizations, Advances in Math. 23 (1977), 285-316 Zbl0342.10014MR429711
- B. C. Berndt, U. Dieter, Sums involving the greatest integer function and Riemann-Stieltjes integration, J. Reine Angew. Math. 337 (1982), 208-220 Zbl0487.10002MR676053
- L. Carlitz, A note on generalized Dedekind sums, Duke Math. J. 21 (1954), 399-404 Zbl0057.03802MR62766
- L. Carlitz, A theorem on generalized Dedekind sums, Acta Arith. 11 (1965), 253-260 Zbl0131.28801MR182604
- L. Carlitz, Many term relations for multiple Dedekind sums, Indian J. Math. 20 (1978), 77-89 Zbl0418.10013MR603918
- U. Dieter, Pseudo-random numbers : the exact distribution of pairs, Math. of Computation 25 (1971), 855-883 Zbl0257.65010MR298727
- S. Egami, An elliptic analogue of multiple Dedekind sums, Compositio Math. 99 (1995), 99-103 Zbl0838.11029MR1352569
- S. Fukuhara, N. Yui, Elliptic Apostol sums and their reciprocity laws, Trans. Amer. Math. Soc. 356 (2004), 4237-4254 Zbl1055.11028MR2058844
- G. Harder, Periods integrals of cohomology classes which are represented by Eisenstein series, Proc. Bombay Colloquium 1979 (1981), 41-115, Springer Verlag Zbl0497.22021MR633658
- F. Hirzebruch, Topological methods in algebraic geometry, (1966), Springer Verlag, Berlin-Heidelberg-New York Zbl0138.42001MR202713
- F. Hirzebruch, T. Berger, R. Jung, Manifolds and modular forms, E20 (1992), Vieweg Verlag Zbl0767.57014MR1189136
- H. Ito, A function on the upper half space which is analogous to imaginary part of , J. Reine Angew. Math. 373 (1987), 148-165 Zbl0601.10021MR870309
- H. Ito, On a property of elliptic Dedekind sums, J. Number Th. 27 (1987), 17-21 Zbl0624.10018MR904003
- H. Rademacher, Generalization of the reciprocity formula for Dedekind sums, Duke Math. J. 21 (1954), 391-397 Zbl0057.03801MR62765
- R. Sczech, Dedekindsummen mit elliptischen funktionen, Invent. Math. 76 (1984), 523-551 Zbl0521.10021MR746541
- D. Zagier, Higher order Dedekind sums, Math. Ann. 202 (1973), 149-172 Zbl0237.10025MR357333
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.