A generalization of the reciprocity law of multiple Dedekind sums

Masahiro Asano[1]

  • [1] Nagoya University Graduate School of Mathemactics Chikusa-ku, Nagoya 464-8602 (Japan)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 2, page 361-377
  • ISSN: 0373-0956

Abstract

top
Various multiple Dedekind sums were introduced by B.C.Berndt, L.Carlitz, S.Egami, D.Zagier and A.Bayad.In this paper, noticing the Jacobi form in Bayad [4], the cotangent function in Zagier [23], Egami’s result on cotangent functions [14] and their reciprocity laws, we study a special case of the Jacobi forms in Bayad [4] and deduce a generalization of Egami’s result on cotangent functions and a generalization of Zagier’s result. Further, we consider their reciprocity laws.

How to cite

top

Asano, Masahiro. "A generalization of the reciprocity law of multiple Dedekind sums." Annales de l’institut Fourier 57.2 (2007): 361-377. <http://eudml.org/doc/10225>.

@article{Asano2007,
abstract = {Various multiple Dedekind sums were introduced by B.C.Berndt, L.Carlitz, S.Egami, D.Zagier and A.Bayad.In this paper, noticing the Jacobi form in Bayad [4], the cotangent function in Zagier [23], Egami’s result on cotangent functions [14] and their reciprocity laws, we study a special case of the Jacobi forms in Bayad [4] and deduce a generalization of Egami’s result on cotangent functions and a generalization of Zagier’s result. Further, we consider their reciprocity laws.},
affiliation = {Nagoya University Graduate School of Mathemactics Chikusa-ku, Nagoya 464-8602 (Japan)},
author = {Asano, Masahiro},
journal = {Annales de l’institut Fourier},
keywords = {Dedekind sums; reciprocity law; Jacobi forms},
language = {eng},
number = {2},
pages = {361-377},
publisher = {Association des Annales de l’institut Fourier},
title = {A generalization of the reciprocity law of multiple Dedekind sums},
url = {http://eudml.org/doc/10225},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Asano, Masahiro
TI - A generalization of the reciprocity law of multiple Dedekind sums
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 2
SP - 361
EP - 377
AB - Various multiple Dedekind sums were introduced by B.C.Berndt, L.Carlitz, S.Egami, D.Zagier and A.Bayad.In this paper, noticing the Jacobi form in Bayad [4], the cotangent function in Zagier [23], Egami’s result on cotangent functions [14] and their reciprocity laws, we study a special case of the Jacobi forms in Bayad [4] and deduce a generalization of Egami’s result on cotangent functions and a generalization of Zagier’s result. Further, we consider their reciprocity laws.
LA - eng
KW - Dedekind sums; reciprocity law; Jacobi forms
UR - http://eudml.org/doc/10225
ER -

References

top
  1. M. F. Atiyah, F. Hirzebruch, Riemann-Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc. 65 (1959), 276-281 Zbl0142.40901MR110106
  2. M. F. Atiyah, F. Hirzebruch, Cohomologie-operationen und charakteristische klassen, Math. Z. 77 (1961), 149-187 Zbl0109.16002MR156361
  3. M. F. Atiyah, I. M. Singer, The index of elliptic operators, Ann. of Math. 87 (1968), 546-604 Zbl0164.24301MR236952
  4. A. Bayad, Sommes de Dedekind elliptiques et formes de Jacobi, Ann. Inst. Fourier 51 (2001), 29-42 Zbl1034.11030MR1821066
  5. A. Bayad, G. Robert, Amélioration d’une congruence pour certains éléments de Stickelberger quadratiques, Bull. Soc. Math. France 125 (1997), 249-267 Zbl0895.11021MR1478032
  6. A. Bayad, G. Robert, Note sur une forme de Jacobi méromorphe, C.R.A.S. 325 (1997), 455-460 Zbl0885.11035MR1692306
  7. M. Beck, Dedekind cotangent sums, Acta Arith. 109 (2003), 109-130 Zbl1061.11043MR1980640
  8. B. C. Berndt, Reciprocity theorems for Dedekind sums and generalizations, Advances in Math. 23 (1977), 285-316 Zbl0342.10014MR429711
  9. B. C. Berndt, U. Dieter, Sums involving the greatest integer function and Riemann-Stieltjes integration, J. Reine Angew. Math. 337 (1982), 208-220 Zbl0487.10002MR676053
  10. L. Carlitz, A note on generalized Dedekind sums, Duke Math. J. 21 (1954), 399-404 Zbl0057.03802MR62766
  11. L. Carlitz, A theorem on generalized Dedekind sums, Acta Arith. 11 (1965), 253-260 Zbl0131.28801MR182604
  12. L. Carlitz, Many term relations for multiple Dedekind sums, Indian J. Math. 20 (1978), 77-89 Zbl0418.10013MR603918
  13. U. Dieter, Pseudo-random numbers : the exact distribution of pairs, Math. of Computation 25 (1971), 855-883 Zbl0257.65010MR298727
  14. S. Egami, An elliptic analogue of multiple Dedekind sums, Compositio Math. 99 (1995), 99-103 Zbl0838.11029MR1352569
  15. S. Fukuhara, N. Yui, Elliptic Apostol sums and their reciprocity laws, Trans. Amer. Math. Soc. 356 (2004), 4237-4254 Zbl1055.11028MR2058844
  16. G. Harder, Periods integrals of cohomology classes which are represented by Eisenstein series, Proc. Bombay Colloquium 1979 (1981), 41-115, Springer Verlag Zbl0497.22021MR633658
  17. F. Hirzebruch, Topological methods in algebraic geometry, (1966), Springer Verlag, Berlin-Heidelberg-New York Zbl0138.42001MR202713
  18. F. Hirzebruch, T. Berger, R. Jung, Manifolds and modular forms, E20 (1992), Vieweg Verlag Zbl0767.57014MR1189136
  19. H. Ito, A function on the upper half space which is analogous to imaginary part of log η ( z ) , J. Reine Angew. Math. 373 (1987), 148-165 Zbl0601.10021MR870309
  20. H. Ito, On a property of elliptic Dedekind sums, J. Number Th. 27 (1987), 17-21 Zbl0624.10018MR904003
  21. H. Rademacher, Generalization of the reciprocity formula for Dedekind sums, Duke Math. J. 21 (1954), 391-397 Zbl0057.03801MR62765
  22. R. Sczech, Dedekindsummen mit elliptischen funktionen, Invent. Math. 76 (1984), 523-551 Zbl0521.10021MR746541
  23. D. Zagier, Higher order Dedekind sums, Math. Ann. 202 (1973), 149-172 Zbl0237.10025MR357333

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.