Multiple Dedekind sums and Jacobi forms

Abdelmejid Bayad[1]

  • [1] Université d'Evry, Département de Mathématiques, boulevard des Coquibus, 91025 Evry Cedex (France)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 1, page 29-42
  • ISSN: 0373-0956

Abstract

top
In this paper we introduce an elliptic analogue of the multiple Dedekind sums investigated by D. Zagier. Our method and results are quite similar to D. Zagier except the use of Jacobi forms D L ( z , ϕ ) in place of the cotangent function which appeared there. In fact we show the reciprocity law for our Dedekind sums. By limiting procedure we can recover the corresponding results on multiple Dedekind (cotangent) sums. By a specialization to the 2-division points, we can recover the known results of S. Egami.

How to cite

top

Bayad, Abdelmejid. "Sommes de Dedekind elliptiques et formes de Jacobi." Annales de l’institut Fourier 51.1 (2001): 29-42. <http://eudml.org/doc/115912>.

@article{Bayad2001,
abstract = {À partir des formes de Jacobi $D_L(z,\varphi )$, on construit une somme de Dedekind elliptique. On obtient ainsi un analogue elliptique aux sommes multiples de Dedekind construites à partir des fonctions cotangentes, étudiées par D. Zagier. En outre, on établit une loi de réciprocité satisfaite par ces nouvelles sommes. Par une procédure de limite, on peut retrouver la loi de réciprocité remplie par les sommes multiples de Dedekind classiques. D’autre part, en les spécialisant en des paramètres de points de 2- division, en la seconde variable $\varphi $ du tore complexe $\{\mathbb \{C\}\}/L$, on retrouve les résultats de S. Egami.},
affiliation = {Université d'Evry, Département de Mathématiques, boulevard des Coquibus, 91025 Evry Cedex (France)},
author = {Bayad, Abdelmejid},
journal = {Annales de l’institut Fourier},
keywords = {Dedekind sums; Jacobi forms; eta; reciprocity law; theta function; Klein function; Weierstrass function; residues formula; cohomology classes},
language = {fre},
number = {1},
pages = {29-42},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sommes de Dedekind elliptiques et formes de Jacobi},
url = {http://eudml.org/doc/115912},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Bayad, Abdelmejid
TI - Sommes de Dedekind elliptiques et formes de Jacobi
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 1
SP - 29
EP - 42
AB - À partir des formes de Jacobi $D_L(z,\varphi )$, on construit une somme de Dedekind elliptique. On obtient ainsi un analogue elliptique aux sommes multiples de Dedekind construites à partir des fonctions cotangentes, étudiées par D. Zagier. En outre, on établit une loi de réciprocité satisfaite par ces nouvelles sommes. Par une procédure de limite, on peut retrouver la loi de réciprocité remplie par les sommes multiples de Dedekind classiques. D’autre part, en les spécialisant en des paramètres de points de 2- division, en la seconde variable $\varphi $ du tore complexe ${\mathbb {C}}/L$, on retrouve les résultats de S. Egami.
LA - fre
KW - Dedekind sums; Jacobi forms; eta; reciprocity law; theta function; Klein function; Weierstrass function; residues formula; cohomology classes
UR - http://eudml.org/doc/115912
ER -

References

top
  1. T. M. Apostol, Introduction to analytic Number Theory, (1976), Springer-Verlag, New York Zbl0335.10001MR434929
  2. M.F. Atiyah, F. Hirzebruch, Cohomologie-Operationen und charakteristische Klassen, Math. Z. 77 (1961), 149-187 Zbl0109.16002MR156361
  3. M.F. Atiyah, F. Hirzebruch, Riemann-Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc. 65 (1959), 276-281 Zbl0142.40901MR110106
  4. M.F. Atiyah, I.M. Singer, The index of elliptic Operators, Ann. of. Math. 87 (1968), 546-604 Zbl0164.24301MR236952
  5. A. Bayad, G. Robert, Amélioration d'une congruence pour certains éléments de Stickelberger quadratiques, Bull. Soc. Math. France 125 (1997), 249-267 Zbl0895.11021MR1478032
  6. A. Bayad, G. Robert, Note sur une forme de Jacobi méromorphe, C.R.A.S., Paris 325 (1997), 455-460 Zbl0885.11035MR1692306
  7. H. Cohen, Sommes de carrés, fonctions L et formes modulaires, C.R.A.S., Paris 277 (1973), 827-830 Zbl0267.10066MR374061
  8. H. Cohen, Sums involving the values at negative integers of L -functions of quadratic characters, Math. Ann. 217 (1975), 271-285 Zbl0311.10030MR382192
  9. R. Dedekind, Erlauterungen zu zwei Fragmenten von Riemann, Ges. math. Werke erster Band (1930), 159-173, Friedrich Vieweg, Braunschweig 
  10. U. Dieter, Pseudo-random numbers: The exact distribution of pairs, Math. of Computation 25 (1971) Zbl0257.65010MR298727
  11. S. Egami, An elliptic analogue of multiple Dedekind sums, Compositio Math. 99 (1995), 99-103 Zbl0838.11029MR1352569
  12. M. Eichler, D. Zagier, The Theory of Jacobi forms, 55 (1985), Birkhäuser Zbl0554.10018MR781735
  13. E. Grosswald, H. Rademacher, Dedekind Sums, No. 16 (1972), Mathematical Assoc. America, Washington D.C Zbl0251.10020MR357299
  14. G. Harder, Periods Integrals of Cohomology Classes which are represented by Eisenstein Series, Proc. Bombay Colloquium (1979), Berlin--Heidelberg--New York Zbl0497.22021
  15. G. Harder, Periods Integrals of Eisenstein Cohomology Classes which and special values of somes L-functions, Number theory related to Fermat's last theorem (1982), 103-142, Birkhäuser, Boston-Basel-Stuttgart Zbl0517.12008
  16. G. H. Hardy, S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. (2) 17 (1918), 75-115 Zbl46.0198.02
  17. F. Hirzebruch, Topological methods in algebraic geometry, (1966), Springer, Berlin--Heidelberg--New York Zbl0376.14001MR1335917
  18. F. Hirzebruch, The signature theorem: reminiscences and recreation, Prospects in Mathematics 70 (1971), 3-31, Princeton University Press, Princeton Zbl0252.58009
  19. F. Hirzebruch, T. Berger, R. Jung, Manifolds and Modular forms, E20 (1992), Vieweg Zbl0767.57014MR1189136
  20. F. Hirzebruch, D. Zagier, The Atiyah-Singer Theorem and Elementary Number Theory, 3 (1974), Publish or Perish Inc. Zbl0288.10001MR650832
  21. H. Ito, A function on the upper halfspace which is analogous to imaginary of log η ( z ) , J. reine angew. Math. 373 (1987), 148-165 Zbl0601.10021MR870309
  22. H. Ito, On a property of elliptic Dedekind sums, J. Number Th. 27 (1987), 17-21 Zbl0624.10018MR904003
  23. D. Kubert, Product formulae on elliptic curves, Inv. Math. 117 (1994), 227-273 Zbl0834.14016MR1273265
  24. D. Kubert, S. Lang, Modular units, 244 (1981), Springer-Verlag Zbl0492.12002MR648603
  25. P. S. Landweber, Elliptic Curves and Modular Forms in Algebraic Topology, Proceeding Princeton 1986 1362 (1988), Springer, Berlin-Heidelberg Zbl0642.00007
  26. S. Lang, Elliptic functions, (1973), Addison-Wesley Zbl0316.14001MR409362
  27. C. Meyer, Uber einige Anwendungen Dedekindscher Summen, J. reine angew. Math. 198 (1957), 143-203 Zbl0079.10303MR104643
  28. C. Meyer, Uber die Bildung von Klasseninvarianten binärer quadratischer Formen mittels Dedekinkscher Summen, Abh. Math. Sem. Univ. Hamburg 27 (1964), 206-230 Zbl0122.05201MR170865
  29. L.J. Mordell, The reciprocity formula for Dedekind sums, Amer. J. Math. 73 (1951), 593-598 Zbl0042.27401MR42449
  30. D. Mumford, Tata Lectures on Theta I, 28 (1983), Birkhäuser Zbl0509.14049MR688651
  31. H. Rademacher, On the partition function p ( n ) , Proc. London Math. Soc. (2) 43 (1937), 241-254 
  32. R. Sczech, Dedekindsummen mit elliptischen Funktionen, Invent. Math. 76 (1984), 523-551 Zbl0521.10021MR746541
  33. D. Zagier, Periods of modular forms and Jacobi theta functions, Invent. Math. 104 (1991), 449-465 Zbl0742.11029MR1106744
  34. D. Zagier, Higher order Dedekind sums, Math. Ann. 202 (1973), 149-172 Zbl0237.10025MR357333
  35. D. Zagier, Note on the Landweber-Stong Elliptic Genus, 1362 (1988), 216-224, Springer, Berlin-Heidelberg Zbl0653.57016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.