Denominators of Igusa class polynomials
Kristin Lauter[1]; Bianca Viray[2]
- [1] Microsoft Research, 1 Microsoft Way, Redmond, WA 98062, USA
- [2] Department of Mathematics, Box 1917, Brown University, Providence, RI 02912, USA
Publications mathématiques de Besançon (2014)
- Volume: 137, Issue: 2, page 5-29
- ISSN: 1958-7236
Access Full Article
topAbstract
topHow to cite
topLauter, Kristin, and Viray, Bianca. "Denominators of Igusa class polynomials." Publications mathématiques de Besançon 137.2 (2014): 5-29. <http://eudml.org/doc/275721>.
@article{Lauter2014,
abstract = {In [22], the authors proved an explicit formula for the arithmetic intersection number $\left(\operatorname\{CM\}(K). G_1\right)$ on the Siegel moduli space of abelian surfaces, under some assumptions on the quartic CM field $K$. These intersection numbers allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus $2$ curves for use in cryptography. One of the main tools in the proof was a previous result of the authors [21] generalizing the singular moduli formula of Gross and Zagier. The current paper combines the arguments of [21, 22] and presents a direct proof of the main arithmetic intersection formula. We focus on providing a stream-lined account of the proof such that the algorithm for implementation is clear, and we give applications and examples of the formula in corner cases.},
affiliation = {Microsoft Research, 1 Microsoft Way, Redmond, WA 98062, USA; Department of Mathematics, Box 1917, Brown University, Providence, RI 02912, USA},
author = {Lauter, Kristin, Viray, Bianca},
journal = {Publications mathématiques de Besançon},
keywords = {Gross-Zagier’s formula; intersection number; complex multiplication; Igusa class polynomials},
language = {eng},
number = {2},
pages = {5-29},
publisher = {Presses universitaires de Franche-Comté},
title = {Denominators of Igusa class polynomials},
url = {http://eudml.org/doc/275721},
volume = {137},
year = {2014},
}
TY - JOUR
AU - Lauter, Kristin
AU - Viray, Bianca
TI - Denominators of Igusa class polynomials
JO - Publications mathématiques de Besançon
PY - 2014
PB - Presses universitaires de Franche-Comté
VL - 137
IS - 2
SP - 5
EP - 29
AB - In [22], the authors proved an explicit formula for the arithmetic intersection number $\left(\operatorname{CM}(K). G_1\right)$ on the Siegel moduli space of abelian surfaces, under some assumptions on the quartic CM field $K$. These intersection numbers allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus $2$ curves for use in cryptography. One of the main tools in the proof was a previous result of the authors [21] generalizing the singular moduli formula of Gross and Zagier. The current paper combines the arguments of [21, 22] and presents a direct proof of the main arithmetic intersection formula. We focus on providing a stream-lined account of the proof such that the algorithm for implementation is clear, and we give applications and examples of the formula in corner cases.
LA - eng
KW - Gross-Zagier’s formula; intersection number; complex multiplication; Igusa class polynomials
UR - http://eudml.org/doc/275721
ER -
References
top- Bruinier, J. H, Yang, T., CM-values of Hilbert modular functions. Invent. Math., 163, no. 2, (2006), 229–288. Zbl1093.11041MR2207018
- Cassels, J.W.S, Fröhlich, A., Algebraic number theory. Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the International Mathematical Union., Academic Press, London, (1967), xviii+366. Zbl0153.07403MR215665
- Costello, C., Deines-Schartz, A., Lauter, K., Yang, T., Constructing abelian surfaces for cryptography via Rosenhain invariants. LMS J. Comput. Math., 17 (Special issue A), (2014), 157–180. Zbl1296.11067MR3240802
- Cox, D. A., Primes of the form , A Wiley-Interscience Publication, Fermat, class field theory and complex multiplication, John Wiley & Sons Inc., New York, (1989), xiv+351. Zbl0701.11001MR1028322
- Dorman, D. R., Global orders in definite quaternion algebras as endomorphism rings for reduced CM elliptic curves, Conférence Théorie des nombres, Quebec, PQ, (1987), de Gruyter, Berlin, (1989), 108–116. Zbl0697.12011MR1024555
- Dorman, D. R., Special values of the elliptic modular function and factorization formulae, J. Reine Angew. Math., 383, (1988), 207–220. Zbl0626.10022MR921991
- Eisenträger, Kirsten, Lauter, K., A CRT algorithm for constructing genus 2 curves over finite fields, Proceedings of Arithmetic, Geometry, and Coding Theory, (AGCT-10), Marseille, Numéro 21, Société Mathématique de France, (2005), 161–176. Zbl1270.11060MR2856565
- Enge, A., Thomé, E., Computing class polynomials for abelian surfaces, Experimental Mathematics, 23, 129–145, Taylor and Francis, (2014). Zbl1293.11107MR3223768
- Gaudry, P., Houtmann, T., Kohel, D., Ritzenthaler, C., Weng, A., The 2-adic CM method for genus 2 curves with application to cryptography, conference Advances in cryptology—ASIACRYPT 2006, Lecture Notes in Comput. Sci., 4284, Springer, Berlin, (2006), 114–129. Zbl1172.94576MR2444631
- Goren, E. Z., Lauter, K. E., Class invariants for quartic CM fields, Ann. Inst. Fourier (Grenoble), 57, (2007), no. 2, 457–480. Zbl1172.11018MR2310947
- Goren, E. Z., Lauter, K. E., Genus 2 Curves with Complex Multiplication, International Mathematics Research Notices, (2011), 75 pp.. Zbl1236.14033MR2899960
- Goren, E. Z., Lauter, K. E., A Gross-Zagier formula for quaternion algebras over totally real fields, Algebra and Number Theory, Vol. 7, (2013), no. 6, 1405–1450. Zbl1300.11068MR3107568
- Gross, B. H., On canonical and quasicanonical liftings, Invent. Math., 84, (1986), no. 2, 321–326. Zbl0597.14044MR833193
- Gross, B. H., Keating, K., On the intersection of modular correspondences, Invent. Math., 112, (1993), 225–245. Zbl0811.11026MR1213101
- Gross, B. H., Zagier, D. B., On singular moduli, J. Reine Angew. Math., 355, (1985), 191–220. Zbl0545.10015MR772491
- Grundman, H., Johnson-Leung, J., Lauter, K., Salerno, A., Viray, B., Wittenborn, E., Igusa Class Polynomials, Embeddings of Quartic CM Fields, and Arithmetic Intersection Theory, WIN–Women in Numbers: Research Directions in Number Theory, Fields Institute Communications, 60, (2011), 35–60. Zbl1258.11067MR2777799
- Igusa, J., On Siegel modular forms genus two. II, Amer. J. Math., 86, (1964), 392–412. Zbl0133.33301MR168805
- Igusa, J., Modular forms and projective invariants, Amer. J. Math., 89, (1967), 817–855. Zbl0159.50401MR229643
- Lang, S., Elliptic functions, Graduate Texts in Mathematics, 112, 2, with an appendix by J. Tate, Springer-Verlag, New York, (1987), xii+326. Zbl0615.14018MR890960
- Lauter, K., Naehrig, M., Yang, T., Hilbert theta series and invariants of genus 2 curves, to appear in Journal of Number Theory. Zbl1332.14031
- Lauter, K., Viray, B., On singular moduli for arbitrary discriminants, International Mathematics Research Notices, (2014). Zbl06503569
- Lauter, K., Viray, B., An arithmetic intersection formula for denominators of Igusa class polynomials, American Journal of Mathematics, (2014). Zbl06434911
- Lauter, K., Yang, T., Computing genus 2 curves from invariants on the Hilbert moduli space, Journal of Number Theory, Elliptic Curve Cryptography, 131, issue 5, (2011). Zbl1225.11084MR2772480
- Neukirch, J., Algebraic number theory, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 322, Springer-Verlag, Berlin, (1999), xviii+571. Zbl0956.11021MR1697859
- Serre, J. -P., Tate, J., Good reduction of abelian varieties, Ann. of Math. (2), 88, (1968), 492–517. Zbl0172.46101MR236190
- Spallek, A. -M., Kurven vom Geschlecht 2 und ihre Anwendung in Public-Key-Kryptosystemen, (1994), Universität Gesamthochschule Essen, Ph. D. Thesis. Zbl0974.11501
- Streng, M., Computing Igusa Class Polynomials, Mathematics of Computation, 83, (2014), 275–309. Zbl1322.11066MR3120590
- van Wamelen, P., Examples of genus two CM curves defined over the rationals, Math. Comp., 68, no. 225, (1999), 307–320. Zbl0906.14025MR1609658
- Vignéras, M. -F., Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, 800, Springer, Berlin, (1980), vii+169. Zbl0422.12008
- Weng, A., Constructing hyperelliptic curves of genus 2 suitable for cryptography, Math. Comp., 72, (2003), no. 241, 435–458 (electronic). Zbl1013.11023MR1933830
- Yang, T., Some Interesting Arithmetic Intersection Formulae in Number Theory, ICCM, I, (2007), 534–545.
- Yang, T., Chowla-Selberg Formula and Colmez’s Conjecture, Can. J. Math., 62, (2010), 456–472. Zbl1205.11068MR2643052
- Yang, T., An arithmetic intersection formula on Hilbert modular surfaces, Amer. J. Math., 132, (2010), 1275–1309. Zbl1206.14049MR2732347
- Yang, T., Arithmetic intersection on a Hilbert modular surface and the Faltings height, Asian Journal of Mathematics, 17, no. 2, 2013, 335–382. Zbl1298.11056MR3078934
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.