Denominators of Igusa class polynomials

Kristin Lauter[1]; Bianca Viray[2]

  • [1] Microsoft Research, 1 Microsoft Way, Redmond, WA 98062, USA
  • [2] Department of Mathematics, Box 1917, Brown University, Providence, RI 02912, USA

Publications mathématiques de Besançon (2014)

  • Volume: 137, Issue: 2, page 5-29
  • ISSN: 1958-7236

Abstract

top
In [22], the authors proved an explicit formula for the arithmetic intersection number CM ( K ) . G 1 on the Siegel moduli space of abelian surfaces, under some assumptions on the quartic CM field K . These intersection numbers allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus 2 curves for use in cryptography. One of the main tools in the proof was a previous result of the authors [21] generalizing the singular moduli formula of Gross and Zagier. The current paper combines the arguments of [21, 22] and presents a direct proof of the main arithmetic intersection formula. We focus on providing a stream-lined account of the proof such that the algorithm for implementation is clear, and we give applications and examples of the formula in corner cases.

How to cite

top

Lauter, Kristin, and Viray, Bianca. "Denominators of Igusa class polynomials." Publications mathématiques de Besançon 137.2 (2014): 5-29. <http://eudml.org/doc/275721>.

@article{Lauter2014,
abstract = {In [22], the authors proved an explicit formula for the arithmetic intersection number $\left(\operatorname\{CM\}(K). G_1\right)$ on the Siegel moduli space of abelian surfaces, under some assumptions on the quartic CM field $K$. These intersection numbers allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus $2$ curves for use in cryptography. One of the main tools in the proof was a previous result of the authors [21] generalizing the singular moduli formula of Gross and Zagier. The current paper combines the arguments of [21, 22] and presents a direct proof of the main arithmetic intersection formula. We focus on providing a stream-lined account of the proof such that the algorithm for implementation is clear, and we give applications and examples of the formula in corner cases.},
affiliation = {Microsoft Research, 1 Microsoft Way, Redmond, WA 98062, USA; Department of Mathematics, Box 1917, Brown University, Providence, RI 02912, USA},
author = {Lauter, Kristin, Viray, Bianca},
journal = {Publications mathématiques de Besançon},
keywords = {Gross-Zagier’s formula; intersection number; complex multiplication; Igusa class polynomials},
language = {eng},
number = {2},
pages = {5-29},
publisher = {Presses universitaires de Franche-Comté},
title = {Denominators of Igusa class polynomials},
url = {http://eudml.org/doc/275721},
volume = {137},
year = {2014},
}

TY - JOUR
AU - Lauter, Kristin
AU - Viray, Bianca
TI - Denominators of Igusa class polynomials
JO - Publications mathématiques de Besançon
PY - 2014
PB - Presses universitaires de Franche-Comté
VL - 137
IS - 2
SP - 5
EP - 29
AB - In [22], the authors proved an explicit formula for the arithmetic intersection number $\left(\operatorname{CM}(K). G_1\right)$ on the Siegel moduli space of abelian surfaces, under some assumptions on the quartic CM field $K$. These intersection numbers allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus $2$ curves for use in cryptography. One of the main tools in the proof was a previous result of the authors [21] generalizing the singular moduli formula of Gross and Zagier. The current paper combines the arguments of [21, 22] and presents a direct proof of the main arithmetic intersection formula. We focus on providing a stream-lined account of the proof such that the algorithm for implementation is clear, and we give applications and examples of the formula in corner cases.
LA - eng
KW - Gross-Zagier’s formula; intersection number; complex multiplication; Igusa class polynomials
UR - http://eudml.org/doc/275721
ER -

References

top
  1. Bruinier, J. H, Yang, T., CM-values of Hilbert modular functions. Invent. Math., 163, no. 2, (2006), 229–288. Zbl1093.11041MR2207018
  2. Cassels, J.W.S, Fröhlich, A., Algebraic number theory. Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the International Mathematical Union., Academic Press, London, (1967), xviii+366. Zbl0153.07403MR215665
  3. Costello, C., Deines-Schartz, A., Lauter, K., Yang, T., Constructing abelian surfaces for cryptography via Rosenhain invariants. LMS J. Comput. Math., 17 (Special issue A), (2014), 157–180. Zbl1296.11067MR3240802
  4. Cox, D. A., Primes of the form x 2 + n y 2 , A Wiley-Interscience Publication, Fermat, class field theory and complex multiplication, John Wiley & Sons Inc., New York, (1989), xiv+351. Zbl0701.11001MR1028322
  5. Dorman, D. R., Global orders in definite quaternion algebras as endomorphism rings for reduced CM elliptic curves, Conférence Théorie des nombres, Quebec, PQ, (1987), de Gruyter, Berlin, (1989), 108–116. Zbl0697.12011MR1024555
  6. Dorman, D. R., Special values of the elliptic modular function and factorization formulae, J. Reine Angew. Math., 383, (1988), 207–220. Zbl0626.10022MR921991
  7. Eisenträger, Kirsten, Lauter, K., A CRT algorithm for constructing genus 2 curves over finite fields, Proceedings of Arithmetic, Geometry, and Coding Theory, (AGCT-10), Marseille, Numéro 21, Société Mathématique de France, (2005), 161–176. Zbl1270.11060MR2856565
  8. Enge, A., Thomé, E., Computing class polynomials for abelian surfaces, Experimental Mathematics, 23, 129–145, Taylor and Francis, (2014). Zbl1293.11107MR3223768
  9. Gaudry, P., Houtmann, T., Kohel, D., Ritzenthaler, C., Weng, A., The 2-adic CM method for genus 2 curves with application to cryptography, conference Advances in cryptology—ASIACRYPT 2006, Lecture Notes in Comput. Sci., 4284, Springer, Berlin, (2006), 114–129. Zbl1172.94576MR2444631
  10. Goren, E. Z., Lauter, K. E., Class invariants for quartic CM fields, Ann. Inst. Fourier (Grenoble), 57, (2007), no. 2, 457–480. Zbl1172.11018MR2310947
  11. Goren, E. Z., Lauter, K. E., Genus 2 Curves with Complex Multiplication, International Mathematics Research Notices, (2011), 75 pp.. Zbl1236.14033MR2899960
  12. Goren, E. Z., Lauter, K. E., A Gross-Zagier formula for quaternion algebras over totally real fields, Algebra and Number Theory, Vol. 7, (2013), no. 6, 1405–1450. Zbl1300.11068MR3107568
  13. Gross, B. H., On canonical and quasicanonical liftings, Invent. Math., 84, (1986), no. 2, 321–326. Zbl0597.14044MR833193
  14. Gross, B. H., Keating, K., On the intersection of modular correspondences, Invent. Math., 112, (1993), 225–245. Zbl0811.11026MR1213101
  15. Gross, B. H., Zagier, D. B., On singular moduli, J. Reine Angew. Math., 355, (1985), 191–220. Zbl0545.10015MR772491
  16. Grundman, H., Johnson-Leung, J., Lauter, K., Salerno, A., Viray, B., Wittenborn, E., Igusa Class Polynomials, Embeddings of Quartic CM Fields, and Arithmetic Intersection Theory, WIN–Women in Numbers: Research Directions in Number Theory, Fields Institute Communications, 60, (2011), 35–60. Zbl1258.11067MR2777799
  17. Igusa, J., On Siegel modular forms genus two. II, Amer. J. Math., 86, (1964), 392–412. Zbl0133.33301MR168805
  18. Igusa, J., Modular forms and projective invariants, Amer. J. Math., 89, (1967), 817–855. Zbl0159.50401MR229643
  19. Lang, S., Elliptic functions, Graduate Texts in Mathematics, 112, 2, with an appendix by J. Tate, Springer-Verlag, New York, (1987), xii+326. Zbl0615.14018MR890960
  20. Lauter, K., Naehrig, M., Yang, T., Hilbert theta series and invariants of genus 2 curves, to appear in Journal of Number Theory. Zbl1332.14031
  21. Lauter, K., Viray, B., On singular moduli for arbitrary discriminants, International Mathematics Research Notices, (2014). Zbl06503569
  22. Lauter, K., Viray, B., An arithmetic intersection formula for denominators of Igusa class polynomials, American Journal of Mathematics, (2014). Zbl06434911
  23. Lauter, K., Yang, T., Computing genus 2 curves from invariants on the Hilbert moduli space, Journal of Number Theory, Elliptic Curve Cryptography, 131, issue 5, (2011). Zbl1225.11084MR2772480
  24. Neukirch, J., Algebraic number theory, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 322, Springer-Verlag, Berlin, (1999), xviii+571. Zbl0956.11021MR1697859
  25. Serre, J. -P., Tate, J., Good reduction of abelian varieties, Ann. of Math. (2), 88, (1968), 492–517. Zbl0172.46101MR236190
  26. Spallek, A. -M., Kurven vom Geschlecht 2 und ihre Anwendung in Public-Key-Kryptosystemen, (1994), Universität Gesamthochschule Essen, Ph. D. Thesis. Zbl0974.11501
  27. Streng, M., Computing Igusa Class Polynomials, Mathematics of Computation, 83, (2014), 275–309. Zbl1322.11066MR3120590
  28. van Wamelen, P., Examples of genus two CM curves defined over the rationals, Math. Comp., 68, no. 225, (1999), 307–320. Zbl0906.14025MR1609658
  29. Vignéras, M. -F., Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, 800, Springer, Berlin, (1980), vii+169. Zbl0422.12008
  30. Weng, A., Constructing hyperelliptic curves of genus 2 suitable for cryptography, Math. Comp., 72, (2003), no. 241, 435–458 (electronic). Zbl1013.11023MR1933830
  31. Yang, T., Some Interesting Arithmetic Intersection Formulae in Number Theory, ICCM, I, (2007), 534–545. 
  32. Yang, T., Chowla-Selberg Formula and Colmez’s Conjecture, Can. J. Math., 62, (2010), 456–472. Zbl1205.11068MR2643052
  33. Yang, T., An arithmetic intersection formula on Hilbert modular surfaces, Amer. J. Math., 132, (2010), 1275–1309. Zbl1206.14049MR2732347
  34. Yang, T., Arithmetic intersection on a Hilbert modular surface and the Faltings height, Asian Journal of Mathematics, 17, no. 2, 2013, 335–382. Zbl1298.11056MR3078934

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.