Extension of holomorphic bundles to the disc (and Serre’s Problem on Stein bundles)
- [1] University of Wisconsin Department of Mathematics Madison WI 53706 (USA)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 2, page 517-523
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topRosay, Jean-Pierre. "Extension of holomorphic bundles to the disc (and Serre’s Problem on Stein bundles)." Annales de l’institut Fourier 57.2 (2007): 517-523. <http://eudml.org/doc/10231>.
@article{Rosay2007,
abstract = {Holomorphic bundles, with fiber $\mathbb\{C\}^n$, defined on open sets in $\mathbb\{C\}$ by locally constant transition automorphisms, are shown to extend to holomorphic bundles on the Riemann sphere. In particular, it allows us to give an example of a non-Stein holomorphic bundle on the unit disc, with polynomial transition automorphisms.},
affiliation = {University of Wisconsin Department of Mathematics Madison WI 53706 (USA)},
author = {Rosay, Jean-Pierre},
journal = {Annales de l’institut Fourier},
keywords = {Holomorphic bundles; Stein manifolds; groups of automorphisms of $\mathbb\{C\}^n$; holomorphic bundles; groups of automorphisms of },
language = {eng},
number = {2},
pages = {517-523},
publisher = {Association des Annales de l’institut Fourier},
title = {Extension of holomorphic bundles to the disc (and Serre’s Problem on Stein bundles)},
url = {http://eudml.org/doc/10231},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Rosay, Jean-Pierre
TI - Extension of holomorphic bundles to the disc (and Serre’s Problem on Stein bundles)
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 2
SP - 517
EP - 523
AB - Holomorphic bundles, with fiber $\mathbb{C}^n$, defined on open sets in $\mathbb{C}$ by locally constant transition automorphisms, are shown to extend to holomorphic bundles on the Riemann sphere. In particular, it allows us to give an example of a non-Stein holomorphic bundle on the unit disc, with polynomial transition automorphisms.
LA - eng
KW - Holomorphic bundles; Stein manifolds; groups of automorphisms of $\mathbb{C}^n$; holomorphic bundles; groups of automorphisms of
UR - http://eudml.org/doc/10231
ER -
References
top- P. Ahern, M. Flores, J-P. Rosay, On and complete holomorphic vector fields, Proc. A.M.S. 128 (2000), 3107-3113 Zbl1121.32303MR1664301
- P. Ahern, F. Forstnerič, One parameter automorphism groups on , Complex Varables Theory Appl. 27 (1995), 245-268 Zbl0838.32009MR1333980
- E. Andersén, L. Lempert, On the group of holomorphic automorphisms of , Inven. Math. 110 (1992), 371-388 Zbl0770.32015MR1185588
- G. Buzzard, J. E. Fornaess, Complete holomorphic vector fields and time-1 maps, Indiana Math. J. 44 (1995), 1175-1182 Zbl0847.32038MR1386765
- G. Coeuré, J-J. Loeb., A counterexample to the Serre problem with a bounded domain in ,, Ann. Math. 122 (1985), 329-334 Zbl0585.32030MR808221
- J-P. Demailly, Différents exemples de fibrés holomorphes non de Stein, Séminaire P. Lelong, H. Skoda 1976/77 694 (1978), 15-41, L.N. in Math. Zbl0418.32011MR522471
- J-P. Demailly, Un exemple de fibré holomorphe non de Stein à fibre ayant pour base le disque ou le plan, Inven. Math. 48 (1978), 293-302 Zbl0372.32012MR508989
- F. Forstnerič, J. Prezelj, Oka’s principle for holomorphic bundles with sprays, Math. Ann. 317 (2000), 117-154 Zbl0964.32017MR1760671
- F. Forstnerič, J-P. Rosay, Approximation of biholomorphic mappings by automorphisms of , Inven. Math. 112 (1993), 323-349 Zbl0792.32011MR1213106
- M. Gromov, Oka’s principle for holomorphic sections of elliptic bundles, Journal A.M.S. 2 (1989), 851-897 Zbl0686.32012MR1001851
- H. Jung, Über ganze birationale Transformationen der Ebene, Reine Angew. Math. 184 (1942), 161-174 Zbl0027.08503MR8915
- H. Skoda, Fibrés holomorphes à base et à fibre de Stein, Inven. Math. 43 (1977), 97-107 Zbl0365.32018MR508091
- H. Skoda, Fibrés holomorphes à base et fibre de Stein, C. R. Acad. Sci. Paris Série AB 284 (1977), 1199-1202 Zbl0353.32032MR437802
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.