Resonances and Spectral Shift Function near the Landau levels
Jean-François Bony[1]; Vincent Bruneau[1]; Georgi Raikov[2]
- [1] Université Bordeaux I FR CNRS 2254, MAB UMR CNRS 5466 Institut de Mathématiques de Bordeaux 351 cours de la Libération 33405 Talence (France)
- [2] Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemáticas Vicuña Mackenna 4860 Santiago de Chile (Chile)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 2, page 629-671
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBony, Jean-François, Bruneau, Vincent, and Raikov, Georgi. "Resonances and Spectral Shift Function near the Landau levels." Annales de l’institut Fourier 57.2 (2007): 629-671. <http://eudml.org/doc/10234>.
@article{Bony2007,
abstract = {We consider the 3D Schrödinger operator $H = H_0 + V$ where $H_0 = (-i\nabla - A)^2 -b$, $A$ is a magnetic potential generating a constant magneticfield of strength $b>0$, and $V$ is a short-range electric potential which decays superexponentially with respect to the variable along the magnetic field. We show that the resolvent of $H$ admits a meromorphic extension from the upper half plane to an appropriate Riemann surface $\{\mathcal\{M\}\}$, and define the resonances of $H$ as the poles of this meromorphic extension. We study their distribution near any fixed Landau level $2bq$, $q \in \{\mathbb\{N\}\}$. First, we obtain a sharp upper bound of the number of resonances in a vicinity of $2bq$. Moreover, under appropriate hypotheses, we establish corresponding lower bounds which imply the existence of an infinite number of resonances, or the absence of resonances in certain sectors adjoining $2bq$. Finally, we deduce a representation of the derivative of the spectral shift function (SSF) for the operator pair $(H,H_0)$ as a sum of a harmonic measure related to the resonances, and the imaginary part of a holomorphic function. This representation justifies the Breit-Wigner approximation, implies a trace formula, and provides information on the singularities of the SSF at the Landau levels.},
affiliation = {Université Bordeaux I FR CNRS 2254, MAB UMR CNRS 5466 Institut de Mathématiques de Bordeaux 351 cours de la Libération 33405 Talence (France); Université Bordeaux I FR CNRS 2254, MAB UMR CNRS 5466 Institut de Mathématiques de Bordeaux 351 cours de la Libération 33405 Talence (France); Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemáticas Vicuña Mackenna 4860 Santiago de Chile (Chile)},
author = {Bony, Jean-François, Bruneau, Vincent, Raikov, Georgi},
journal = {Annales de l’institut Fourier},
keywords = {Magnetic Schrödinger operators; resonances; spectral shift function; Breit-Wigner approximation; magnetic Schrödinger operators},
language = {eng},
number = {2},
pages = {629-671},
publisher = {Association des Annales de l’institut Fourier},
title = {Resonances and Spectral Shift Function near the Landau levels},
url = {http://eudml.org/doc/10234},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Bony, Jean-François
AU - Bruneau, Vincent
AU - Raikov, Georgi
TI - Resonances and Spectral Shift Function near the Landau levels
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 2
SP - 629
EP - 671
AB - We consider the 3D Schrödinger operator $H = H_0 + V$ where $H_0 = (-i\nabla - A)^2 -b$, $A$ is a magnetic potential generating a constant magneticfield of strength $b>0$, and $V$ is a short-range electric potential which decays superexponentially with respect to the variable along the magnetic field. We show that the resolvent of $H$ admits a meromorphic extension from the upper half plane to an appropriate Riemann surface ${\mathcal{M}}$, and define the resonances of $H$ as the poles of this meromorphic extension. We study their distribution near any fixed Landau level $2bq$, $q \in {\mathbb{N}}$. First, we obtain a sharp upper bound of the number of resonances in a vicinity of $2bq$. Moreover, under appropriate hypotheses, we establish corresponding lower bounds which imply the existence of an infinite number of resonances, or the absence of resonances in certain sectors adjoining $2bq$. Finally, we deduce a representation of the derivative of the spectral shift function (SSF) for the operator pair $(H,H_0)$ as a sum of a harmonic measure related to the resonances, and the imaginary part of a holomorphic function. This representation justifies the Breit-Wigner approximation, implies a trace formula, and provides information on the singularities of the SSF at the Landau levels.
LA - eng
KW - Magnetic Schrödinger operators; resonances; spectral shift function; Breit-Wigner approximation; magnetic Schrödinger operators
UR - http://eudml.org/doc/10234
ER -
References
top- J. Avron, I. Herbst, B. Simon, Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J. 45 (1978), 847-883 Zbl0399.35029MR518109
- A. Sá Barreto, M. Zworski, Existence of resonances in three dimensions, Commun. Math. Phys. 173 (1995), 401-415 Zbl0835.35099MR1355631
- J.-F. Bony, J. Sjöstrand, Trace formula for resonances in small domains, J. Funct. Anal. 184 (2001), 402-418 Zbl1068.47055MR1851003
- J. M. Bouclet, Traces formulae for relatively Hilbert-Schmidt perturbations, Asymptot. Anal. 32 (2002), 257-291 Zbl1062.47021MR1993651
- J. M. Bouclet, Spectral distributions for long range perturbations, J. Funct. Anal. 212 (2004), 431-471 Zbl1088.35041MR2064934
- V. Bruneau, V. Petkov, Meromorphic continuation of the spectral shift function, Duke Math. J. 116 (2003), 389-430 Zbl1033.35081MR1958093
- V. Bruneau, A. Pushnitski, G. D. Raikov, Spectral shift function in strong magnetic fields, Algebra i Analysis 16 (2004), 207-238 Zbl1082.35115MR2069004
- D. Delande, A. Bommier, J.-C. Gay, Positive-Energy spectrum of the hydrogen atom in a magnetic field, Phys. Rev. Lett. 66 (1991), 141-144
- M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, Lecture Notes Series, London Math. Society 268 (1999), Cambridge University Press Zbl0926.35002MR1735654
- M. Dimassi, M. Zerzeri, A local trace formula for resonances of perturbed periodic Schrödinger operators, J. Funct. Anal. 198 (2003), 142-159 Zbl1090.35065MR1962356
- C. Fernández, G. D. Raikov, On the singularities of the magnetic spectral shift function at the Landau levels, Ann. Henri Poincaré 5 (2004), 381-403 Zbl1062.81043MR2057679
- N. Filonov, A. Pushnitski, Spectral asymptotics of Pauli operators and orthogonal polynomials in complex domains, Commun. Math. Phys. 264 (2006), 759-772 Zbl1106.81040MR2217290
- R. Froese, Asymptotic distribution of resonances in one dimension, J. Diff. Equa. 137 (1997), 251-272 Zbl0955.35057MR1456597
- R. Froese, R. Waxler, Ground state resonances of a hydrogen atom in an intense magnetic field, Rev. Math. Phys. 7 (1995), 311-361 Zbl0836.47048MR1326138
- W. Fulton, Algebraic Topology, A First Course, Graduate Texts in Mathematics (1995), Springer Zbl0852.55001MR1343250
- I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs 18 (1969), American Math. Society, Providence, R.I. Zbl0181.13504MR246142
- L. S. Koplienko, Trace formula for non trace-class perturbations, Sibirsk. Mat. Zh. 25 (1984), 62-71 Zbl0574.47021MR762239
- L. S. Koplienko, Regularized function of spectral shift for a one-dimensional Schrödinger operator with slowly decreasing potential, Sibirsk. Mat. Zh. 26 (1985), 72-77, 62-71 Zbl0581.47034MR792056
- M. G. Krein, On perturbation determinants and a trace formula for unitary and self-adjoint operators, Dokl. Akad. Nauk SSSR 144 (1962), 268-271 Zbl0191.15201MR139006
- L. Landau, Diamagnetismus der Metalle, Z. Physik 64 (1930), 629-637
- V. Petkov, M. Zworski, Semi-classical estimates on the scattering determinant, Ann. H. Poincaré 2 (2001), 675-711 Zbl1041.81041MR1852923
- G. D. Raikov, Eigenvalue asymptotics for the Schrödinger operator with homogeneous magnetic potential and decreasing electric potential. I. Behaviour near the essential spectrum tips, Commun. PDE 15 (1990), 407-434 Zbl0739.35055MR1044429
- G. D. Raikov, Spectral shift function for Schrödinger operators in constant magnetic fields, Cubo 7 (2005), 171-199 Zbl1103.81018MR2186031
- G. D. Raikov, Spectral shift function for magnetic Schrödinger operators, Mathematical Physics of Quantum Mechanics, Proceedings of the Conference Math. 9, Giens (France), 2004, Lecture Notes in Physics 690 (2006), 451-465, Springer Zbl1167.81383MR2235707
- G. D. Raikov, S. Warzel, Quasi-classical versus non-classical spectral asymptotics for magnetic Schödinger operators with decreasing electric potentials, Rev. Math. Phys. 14 (2002), 1051-1072 Zbl1033.81038MR1939760
- J. Sjöstrand, Lectures on resonances Zbl0702.35188
- J. Sjöstrand, A trace formula for resonances and application to semi-classical Schrödinger operator, Séminaire EDP, Exposé II, École Polytechnique (1996-1997), 1-17 Zbl1061.35506MR1482808
- J. Sjöstrand, A trace formula and review of some estimates for resonances, Microlocal analysis and spectral theory (Lucca, 1996), p.377–437, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 490 (1997), Dordrecht, Kluwer Acad. Publ. Zbl0877.35090MR1451399
- J. Sjöstrand, Resonances for bottles and trace formulae, Math. Nachr. 221 (2001), 95-149 Zbl0979.35109MR1806367
- A. V. Sobolev, Asymptotic behavior of energy levels of a quantum particle in a homogeneous magnetic field perturbed by an attenuating electric field. II, Probl. Mat. Fiz., Leningrad. Univ. 11 (1986), 232-248 MR857118
- X. P. Wang, Barrier resonances in strong magnetic fields, Commun. Partial Differ. Equations 17 (1992), 1539-1566 Zbl0795.35097MR1187621
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.