Holomorphic riemannian metrics on compact threefolds are locally homogeneous
- [1] Université Paris-Sud (11) Département de Mathématiques d’Orsay Équipe de Topologie et Dynamique, Bat. 425 U.M.R. 8628 C.N.R.S. 91405 Orsay Cedex (France)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 3, page 739-773
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. M. Amores, Vector fields of a finite type -structure, J. Differential Geom. 14 (1979), 1-6 Zbl0414.53030MR577874
- W. Barth, C. Peters, A. Van de Ven, Compact complex surfaces, (1984), Springer-Verlag Zbl0718.14023MR749574
- F. Belgun, Null-geodesics in complex conformal manifolds and the LeBrun correspondence, J. Reine Angew. Math. 536 (2001), 43-63 Zbl1014.53018MR1837426
- Y. Benoist, Orbites des structures rigides (d’après M. Gromov), Integrable systems and foliations. Feuilletages et systèmes intégrables. Papers from a colloquium, Montpellier, France, May 22–26, 1995 145 (1997), 1-17, Birkhäuser, Boston Zbl0880.58031MR1432904
- F. Bosio, Actions holomorphes et localement libres de groupes de Lie abéliens, (1996)
- M. Brunella, On holomorphic forms on compact complex threefolds, Comment. Math. Helv. 74 (1999), 642-656 Zbl0955.32016MR1730661
- G. D’Ambra, M. Gromov, Lectures on transformations groups : geometry and dynamics, J. Differential Geom. Suppl. 1 (1991), 19-111 Zbl0752.57017MR1144526
- S. Dumitrescu, Métriques riemanniennes holomorphes en petite dimension, Ann. Institut Fourier 51 (2001), 1663-1690 Zbl1016.53051MR1871285
- S. Dumitrescu, Structures géométriques holomorphes sur les variétés complexes compactes, Ann. Sci. École Norm. Sup. 34 (2001), 557-571 Zbl1016.32012MR1852010
- E. Ghys, Déformations des structures complexes sur les espaces homogènes de , J. Reine Angew. Math. 468 (1995), 113-138 Zbl0868.32023MR1361788
- M. Gromov, Rigid transformation groups, Géométrie Différentielle 33 (1988), 65-141, Hermann, Paris Zbl0652.53023MR955852
- J. Humphreys, Linear algebraic groups, 21 (1975), Springer-Verlag Zbl0325.20039MR396773
- J. M. Hwang, N. Mok, Uniruled projective manifolds with irreducible reductive -structure, J. Reine Angew. Math. 490 (1997), 55-64 Zbl0882.22007MR1468924
- M. Inoue, S. Kobayashi, T. Ochiai, Holomorphic affine connections on compact complex surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 247-264 Zbl0467.32014MR586449
- C. Lebrun, Spaces of complex null geodesics in complex-Riemannian geometry, Trans. Amer. Math. Soc. 278 (1983), 209-231 Zbl0562.53018MR697071
- J. Milnor, Curvatures of Left Invariant Metrics on Lie Groups, Advances in Math. 21 (1976), 293-329 Zbl0341.53030MR425012
- P. Molino, Riemannian Foliations, (1988), Birkhäuser Zbl0633.53001MR932463
- D. Mumford, Introduction to algebraic geometry, (1966), Harvard University Zbl0187.42701
- K. Nomizu, On local and global existence of Killing vector fields, Ann. Math. 72 (1960), 105-120 Zbl0093.35103MR119172
- I. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697 Zbl0171.42503MR131248
- K. Ueno, On compact analytic threefolds with non-trivial Albanese tori, Math. Ann. 278 (1987), 41-70 Zbl0628.32037MR909217
- A. Vitter, Affine structures on compact complex manifolds, Inventiones math. 17 (1972), 231-244 Zbl0253.32006MR338998
- C. Wall, Geometric structures on compact complex analytic surfaces, Topology 25 (1986), 119-153 Zbl0602.57014MR837617
- H. C. Wang, Complexe parallelisable manifolds, Proc. Amer. Math. Soc. 5 (1954), 771-776 Zbl0056.15403
- J. Wolf, Spaces of constant curvature, (1967), McGraw-Hill Zbl0162.53304MR217740
- A. Zeghib, Killing fields in compact Lorentz -manifolds, J. Differential Geom. 43 (1996), 859-894 Zbl0877.53048MR1412688
- A. Zeghib, Geodesic foliations in Lorentz -manifolds, Comment. Math. Helv. 74 (1999), 1-21 Zbl0919.53011MR1677118