Holomorphic riemannian metrics in little dimension

Sorin Dumitrescu[1]

  • [1] Université Paris-Sud, Mathématiques, Bâtiment 425, 91405 Orsay cedex (France)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 6, page 1663-1690
  • ISSN: 0373-0956

Abstract

top
We study holomorphic Riemannian metrics on compact complex threefolds. We show that, contrary to the situation in the real domain, a holomorphic Riemannian metric admits a "big" pseudogroup of local isometries. It follows that compact complex simply connected threefolds do not admit any holomorphic Riemannian metric.

How to cite

top

Dumitrescu, Sorin. "Métriques riemanniennes holomorphes en petite dimension." Annales de l’institut Fourier 51.6 (2001): 1663-1690. <http://eudml.org/doc/115963>.

@article{Dumitrescu2001,
abstract = {Nous étudions les métriques riemanniennes holomorphes sur les variétés complexes compactes de dimension $3$. Nous montrons que, contrairement au cas réel, une métrique riemannienne holomorphe possède un “grand” pseudo-groupe d’isométries locales. Ceci implique qu’une telle métrique n’existe pas sur les variétés complexes compactes simplement connexes de dimension $3$.},
affiliation = {Université Paris-Sud, Mathématiques, Bâtiment 425, 91405 Orsay cedex (France)},
author = {Dumitrescu, Sorin},
journal = {Annales de l’institut Fourier},
keywords = {complex manifolds; holomorphic riemannian metrics; algebraic theory of invariants; pseudogroup of local isometries},
language = {fre},
number = {6},
pages = {1663-1690},
publisher = {Association des Annales de l'Institut Fourier},
title = {Métriques riemanniennes holomorphes en petite dimension},
url = {http://eudml.org/doc/115963},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Dumitrescu, Sorin
TI - Métriques riemanniennes holomorphes en petite dimension
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 6
SP - 1663
EP - 1690
AB - Nous étudions les métriques riemanniennes holomorphes sur les variétés complexes compactes de dimension $3$. Nous montrons que, contrairement au cas réel, une métrique riemannienne holomorphe possède un “grand” pseudo-groupe d’isométries locales. Ceci implique qu’une telle métrique n’existe pas sur les variétés complexes compactes simplement connexes de dimension $3$.
LA - fre
KW - complex manifolds; holomorphic riemannian metrics; algebraic theory of invariants; pseudogroup of local isometries
UR - http://eudml.org/doc/115963
ER -

References

top
  1. D. Alekseevskij, A. Vinogradov, V. Lychagin, Basic ideas and concepts of differential geometry, Geometry I, E.M.S. 28 (1991), Springer-Verlag Zbl0675.53001
  2. W. Barth, C. Peters, A. Van de Ven, Compact complex surfaces, (1984), Springer-Verlag Zbl0718.14023MR749574
  3. Y. Benoist, Orbites des structures rigides (d'après M. Gromov), Feuilletages et systèmes intégrables (Montpellier, 1995) (1997), 1-17, Birkhäuser, Boston Zbl0880.58031
  4. F. Bogomolov, Holomorphic tensors and vector bundles on projective varieties, Math. USSR Izvestija 13 (1979), 499-555 Zbl0439.14002
  5. M. Brion, Sur l'image de l'application moment, Séminaire d'algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986) (1987), 177-192 Zbl0667.58012
  6. M. Brunella, On holomorphic forms on compact complex threefolds, Comment. Math. Helv. 74 (1999), 642-656 Zbl0955.32016MR1730661
  7. G. D'Ambra, M. Gromov, Lectures on transformations groups: geometry and dynamics, Surveys in Differential Geometry (Cambridge) (1990), 19-111 Zbl0752.57017MR1144526
  8. S. Dumitrescu, Structures géométriques holomorphes, (1999) Zbl0969.32010MR1735886
  9. S. Dumitrescu, Structures géométriques holomorphes sur les variétés complexes compactes Zbl1016.32012
  10. I. Enoki, Generalizations of Albanese mappings for non-Kähler manifolds, Geometry and analysis on complex manifolds (1994), 51-62, World Scientific, Singapore Zbl0880.58001
  11. M. Gromov, Rigid transformation groups, Géométrie Différentielle, Travaux en cours 33 (1988), 65-141, Hermann, Paris Zbl0652.53023
  12. E. Ghys, Déformations des structures complexes sur les espaces homogènes de S L ( 2 , ) , J. reine angew. Math. 468 (1995), 113-138 Zbl0868.32023MR1361788
  13. P. Griffiths, J. Harris, Principles of algebraic geometry, (1978), Wiley-interscience publication Zbl0408.14001MR507725
  14. J. Humphreys, Linear algebraic groups, 21 (1975), Springer-Verlag Zbl0325.20039
  15. M. Inoue, S. Kobayashi, T. Ochiai, Holomorphic affine connections on compact complex surfaces, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 27 (1980), 247-264 Zbl0467.32014MR586449
  16. S. Kobayashi, The first Chern class and holomorphic symmetric tensor fields, J. Math. Soc. Japan 32 (1980), 325-329 Zbl0447.53055MR567422
  17. B. Moishezon, On n dimensional compact varieties with n independent meromorphic functions, Amer. Math. Soc. Transl. 63 (1967), 51-77 Zbl0186.26204
  18. D. Mumford, Introduction to algebraic geometry, (1966), Harvard University Zbl0187.42701
  19. K. Nomizu, On local and global existence of Killing vector fields, Ann. of Math. (2) 72 (1960), 105-120 Zbl0093.35103MR119172
  20. I. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math 13 (1960), 685-697 Zbl0171.42503MR131248
  21. K. Ueno, Classification theory of algebraic varieties and compact complet spaces, Springer Lect. Notes 439 (1975) Zbl0299.14007MR506253
  22. C. Wall, Geometric structures on compact complex analytic surfaces, Topology 25 (1986), 119-153 Zbl0602.57014MR837617
  23. J. Wolf, Spaces of constant curvature, McGraw-Hill Series in Higher Math. (1967) Zbl0162.53304MR217740

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.