A finiteness result for the compactly supported cohomology of rigid analytic varieties, II
Roland Huber[1]
- [1] Bergische Universität Wuppertal Fachbereich Mathematik und Naturwissenschaften Gaussstr. 20 42097 Wuppertal (Germany)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 3, page 973-1017
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHuber, Roland. "A finiteness result for the compactly supported cohomology of rigid analytic varieties, II." Annales de l’institut Fourier 57.3 (2007): 973-1017. <http://eudml.org/doc/10248>.
@article{Huber2007,
abstract = {Let $h:X \rightarrow Y$ be a separated morphism of adic spaces of finite type over a non-archimedean field $k$ with $Y$ affinoid and of dimension $\le 1$, let $L$ be a locally closed constructible subset of $X$ and let $g:(X,L) \rightarrow Y$ be the morphism of pseudo-adic spaces induced by $h$. Let $A$ be a noetherian torsion ring with torsion prime to the characteristic of the residue field of the valuation ring of $k$ and let $F$ be a constant $A$-module of finite type on $(X,L)_\{\rm \acute\{e\}t\} $. There is a natural class $\mathscr\{C\} (Y)$ of $A$-modules on $Y_\{\rm \acute\{e\}t\}$ generated by the constructible $A$-modules and the Zariski-constructible $A$-modules. We show that, for every $n \in \mathbb\{N\} _0$, the higher direct image sheaf with proper support $R^ng_!F$ is generically constructible, and if $h$ is locally algebraic, $R^ng_!F$ is an element of $\mathscr\{C\} (Y)$. As an application we obtain a comparison isomorphism for the $\ell $-adic cohomology of a separated scheme of finite type over $k$ and its associated adic space.},
affiliation = {Bergische Universität Wuppertal Fachbereich Mathematik und Naturwissenschaften Gaussstr. 20 42097 Wuppertal (Germany)},
author = {Huber, Roland},
journal = {Annales de l’institut Fourier},
keywords = {Rigid analytic spaces; adic spaces; compactly supported cohomology; rigid analytic spaces},
language = {eng},
number = {3},
pages = {973-1017},
publisher = {Association des Annales de l’institut Fourier},
title = {A finiteness result for the compactly supported cohomology of rigid analytic varieties, II},
url = {http://eudml.org/doc/10248},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Huber, Roland
TI - A finiteness result for the compactly supported cohomology of rigid analytic varieties, II
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 3
SP - 973
EP - 1017
AB - Let $h:X \rightarrow Y$ be a separated morphism of adic spaces of finite type over a non-archimedean field $k$ with $Y$ affinoid and of dimension $\le 1$, let $L$ be a locally closed constructible subset of $X$ and let $g:(X,L) \rightarrow Y$ be the morphism of pseudo-adic spaces induced by $h$. Let $A$ be a noetherian torsion ring with torsion prime to the characteristic of the residue field of the valuation ring of $k$ and let $F$ be a constant $A$-module of finite type on $(X,L)_{\rm \acute{e}t} $. There is a natural class $\mathscr{C} (Y)$ of $A$-modules on $Y_{\rm \acute{e}t}$ generated by the constructible $A$-modules and the Zariski-constructible $A$-modules. We show that, for every $n \in \mathbb{N} _0$, the higher direct image sheaf with proper support $R^ng_!F$ is generically constructible, and if $h$ is locally algebraic, $R^ng_!F$ is an element of $\mathscr{C} (Y)$. As an application we obtain a comparison isomorphism for the $\ell $-adic cohomology of a separated scheme of finite type over $k$ and its associated adic space.
LA - eng
KW - Rigid analytic spaces; adic spaces; compactly supported cohomology; rigid analytic spaces
UR - http://eudml.org/doc/10248
ER -
References
top- V. G. Berkovich, Etale cohomology for p-adic analytic spaces, (1994)
- N. Bourbaki, Commutative Algebra, (1972), Hermann, Paris Zbl0279.13001MR360549
- P. Deligne, J.-F. Boutot, L. Illusie, J.-L. Verdier, Cohomologie étale, 569 (1977), Springer, Berlin Heidelberg New York MR463174
- E. Freitag, R. Kiehl, Etale cohomology and the Weil Conjecture, (1988), Springer, Berlin Heidelberg New York Zbl0643.14012MR926276
- A. Grothendieck, Éléments de Géométrie Algébrique, Publ. Math. 11 (1961) Zbl0236.14003
- A. Grothendieck, Revêtements Étales et Groupe Fondamental, 224 (1971), Springer, Berlin Heidelberg New York MR354651
- R. Huber, Continuous valuations, Math. Z. 212 (1993), 445-477 Zbl0788.13010MR1207303
- R. Huber, A generalization of formal schemes and rigid analytic varieties, Math. Z. 217 (1994), 513-551 Zbl0814.14024MR1306024
- R. Huber, Etale Cohomology of Rigid Analytic Varieties and Adic Spaces, (1996), Vieweg, Braunschweig Wiesbaden Zbl0868.14010MR1734903
- R. Huber, A comparison theorem for -adic cohomology, Compos. Math. 112 (1998), 217-235 Zbl0930.14010MR1626021
- R. Huber, A finiteness result for the compactly supported cohomology of rigid analytic varieties, J. Alg. Geom. 7 (1998), 313-357 Zbl1040.14008MR1620114
- R. Huber, M. Knebusch, On valuation spectra, Contemporary Mathematics 115 (1994), 167-206 Zbl0799.13002MR1260707
- Roland Huber, Bewertungsspektrum und rigide Geometrie, 23 (1993), Universität Regensburg Fachbereich Mathematik Zbl0806.13001MR1255978
- R. Kiehl, Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie, Invent. math. 2 (1967), 191-214 Zbl0202.20101MR210948
- Ursula Köpf, Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen, Schr. Math. Inst. Univ. Münster (2) (1974) Zbl0275.14006MR422671
- W. Lütkebohmert, Riemann’s existence problem for a p-adic field, Invent. math. 111 (1993), 309-330 Zbl0780.32005MR1198812
- W. Lütkebohmert, The structure of proper p-adic groups, J. reine angew. Math. 408 (1995), 167-219 Zbl0869.14009MR1361790
- L. Ramero, Local monodromy in non-archimedean analytic geometry, Publ. Math. 102 (2006), 167-280 Zbl1111.14012MR2217053
- M. Raynaud, L. Gruson, Critères de platitude et de projectivité, Invent. math. 13 (1971), 1-89 Zbl0227.14010MR308104
- J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier 6 (1956), 1-42 Zbl0075.30401MR82175
- M. Strauch, Deformation spaces of one-dimensional formal modules and their cohomology, (2006) Zbl1140.22017
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.