A finiteness result for the compactly supported cohomology of rigid analytic varieties, II

Roland Huber[1]

  • [1] Bergische Universität Wuppertal Fachbereich Mathematik und Naturwissenschaften Gaussstr. 20 42097 Wuppertal (Germany)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 3, page 973-1017
  • ISSN: 0373-0956

Abstract

top
Let h : X Y be a separated morphism of adic spaces of finite type over a non-archimedean field k with Y affinoid and of dimension 1 , let L be a locally closed constructible subset of X and let g : ( X , L ) Y be the morphism of pseudo-adic spaces induced by h . Let A be a noetherian torsion ring with torsion prime to the characteristic of the residue field of the valuation ring of k and let F be a constant A -module of finite type on ( X , L ) e ´ t . There is a natural class 𝒞 ( Y ) of A -modules on Y e ´ t generated by the constructible A -modules and the Zariski-constructible A -modules. We show that, for every n 0 , the higher direct image sheaf with proper support R n g ! F is generically constructible, and if h is locally algebraic, R n g ! F is an element of 𝒞 ( Y ) . As an application we obtain a comparison isomorphism for the -adic cohomology of a separated scheme of finite type over k and its associated adic space.

How to cite

top

Huber, Roland. "A finiteness result for the compactly supported cohomology of rigid analytic varieties, II." Annales de l’institut Fourier 57.3 (2007): 973-1017. <http://eudml.org/doc/10248>.

@article{Huber2007,
abstract = {Let $h:X \rightarrow Y$ be a separated morphism of adic spaces of finite type over a non-archimedean field $k$ with $Y$ affinoid and of dimension $\le 1$, let $L$ be a locally closed constructible subset of $X$ and let $g:(X,L) \rightarrow Y$ be the morphism of pseudo-adic spaces induced by $h$. Let $A$ be a noetherian torsion ring with torsion prime to the characteristic of the residue field of the valuation ring of $k$ and let $F$ be a constant $A$-module of finite type on $(X,L)_\{\rm \acute\{e\}t\} $. There is a natural class $\mathscr\{C\} (Y)$ of $A$-modules on $Y_\{\rm \acute\{e\}t\}$ generated by the constructible $A$-modules and the Zariski-constructible $A$-modules. We show that, for every $n \in \mathbb\{N\} _0$, the higher direct image sheaf with proper support $R^ng_!F$ is generically constructible, and if $h$ is locally algebraic, $R^ng_!F$ is an element of $\mathscr\{C\} (Y)$. As an application we obtain a comparison isomorphism for the $\ell $-adic cohomology of a separated scheme of finite type over $k$ and its associated adic space.},
affiliation = {Bergische Universität Wuppertal Fachbereich Mathematik und Naturwissenschaften Gaussstr. 20 42097 Wuppertal (Germany)},
author = {Huber, Roland},
journal = {Annales de l’institut Fourier},
keywords = {Rigid analytic spaces; adic spaces; compactly supported cohomology; rigid analytic spaces},
language = {eng},
number = {3},
pages = {973-1017},
publisher = {Association des Annales de l’institut Fourier},
title = {A finiteness result for the compactly supported cohomology of rigid analytic varieties, II},
url = {http://eudml.org/doc/10248},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Huber, Roland
TI - A finiteness result for the compactly supported cohomology of rigid analytic varieties, II
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 3
SP - 973
EP - 1017
AB - Let $h:X \rightarrow Y$ be a separated morphism of adic spaces of finite type over a non-archimedean field $k$ with $Y$ affinoid and of dimension $\le 1$, let $L$ be a locally closed constructible subset of $X$ and let $g:(X,L) \rightarrow Y$ be the morphism of pseudo-adic spaces induced by $h$. Let $A$ be a noetherian torsion ring with torsion prime to the characteristic of the residue field of the valuation ring of $k$ and let $F$ be a constant $A$-module of finite type on $(X,L)_{\rm \acute{e}t} $. There is a natural class $\mathscr{C} (Y)$ of $A$-modules on $Y_{\rm \acute{e}t}$ generated by the constructible $A$-modules and the Zariski-constructible $A$-modules. We show that, for every $n \in \mathbb{N} _0$, the higher direct image sheaf with proper support $R^ng_!F$ is generically constructible, and if $h$ is locally algebraic, $R^ng_!F$ is an element of $\mathscr{C} (Y)$. As an application we obtain a comparison isomorphism for the $\ell $-adic cohomology of a separated scheme of finite type over $k$ and its associated adic space.
LA - eng
KW - Rigid analytic spaces; adic spaces; compactly supported cohomology; rigid analytic spaces
UR - http://eudml.org/doc/10248
ER -

References

top
  1. V. G. Berkovich, Etale cohomology for p-adic analytic spaces, (1994) 
  2. N. Bourbaki, Commutative Algebra, (1972), Hermann, Paris Zbl0279.13001MR360549
  3. P. Deligne, J.-F. Boutot, L. Illusie, J.-L. Verdier, Cohomologie étale, 569 (1977), Springer, Berlin Heidelberg New York MR463174
  4. E. Freitag, R. Kiehl, Etale cohomology and the Weil Conjecture, (1988), Springer, Berlin Heidelberg New York Zbl0643.14012MR926276
  5. A. Grothendieck, Éléments de Géométrie Algébrique, Publ. Math. 11 (1961) Zbl0236.14003
  6. A. Grothendieck, Revêtements Étales et Groupe Fondamental, 224 (1971), Springer, Berlin Heidelberg New York MR354651
  7. R. Huber, Continuous valuations, Math. Z. 212 (1993), 445-477 Zbl0788.13010MR1207303
  8. R. Huber, A generalization of formal schemes and rigid analytic varieties, Math. Z. 217 (1994), 513-551 Zbl0814.14024MR1306024
  9. R. Huber, Etale Cohomology of Rigid Analytic Varieties and Adic Spaces, (1996), Vieweg, Braunschweig Wiesbaden Zbl0868.14010MR1734903
  10. R. Huber, A comparison theorem for -adic cohomology, Compos. Math. 112 (1998), 217-235 Zbl0930.14010MR1626021
  11. R. Huber, A finiteness result for the compactly supported cohomology of rigid analytic varieties, J. Alg. Geom. 7 (1998), 313-357 Zbl1040.14008MR1620114
  12. R. Huber, M. Knebusch, On valuation spectra, Contemporary Mathematics 115 (1994), 167-206 Zbl0799.13002MR1260707
  13. Roland Huber, Bewertungsspektrum und rigide Geometrie, 23 (1993), Universität Regensburg Fachbereich Mathematik Zbl0806.13001MR1255978
  14. R. Kiehl, Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie, Invent. math. 2 (1967), 191-214 Zbl0202.20101MR210948
  15. Ursula Köpf, Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen, Schr. Math. Inst. Univ. Münster (2) (1974) Zbl0275.14006MR422671
  16. W. Lütkebohmert, Riemann’s existence problem for a p-adic field, Invent. math. 111 (1993), 309-330 Zbl0780.32005MR1198812
  17. W. Lütkebohmert, The structure of proper p-adic groups, J. reine angew. Math. 408 (1995), 167-219 Zbl0869.14009MR1361790
  18. L. Ramero, Local monodromy in non-archimedean analytic geometry, Publ. Math. 102 (2006), 167-280 Zbl1111.14012MR2217053
  19. M. Raynaud, L. Gruson, Critères de platitude et de projectivité, Invent. math. 13 (1971), 1-89 Zbl0227.14010MR308104
  20. J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier 6 (1956), 1-42 Zbl0075.30401MR82175
  21. M. Strauch, Deformation spaces of one-dimensional formal modules and their cohomology, (2006) Zbl1140.22017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.