Construction of Sobolev spaces of fractional order with sub-riemannian vector fields

Sami Mustapha[1]; François Vigneron[2]

  • [1] Institut de Mathématiques de Jussieu 175, rue du Chevaleret 75013 Paris (France)
  • [2] Centre de Mathématiques Laurent Schwartz U.M.R. 7640 du C.N.R.S. École Polytechnique 91128 Palaiseau cedex (France)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 4, page 1023-1049
  • ISSN: 0373-0956

Abstract

top
Given a smooth family of vector fields satisfying Chow-Hörmander’s condition of step 2 and a regularity assumption, we prove that the Sobolev spaces of fractional order constructed by the standard functional analysis can actually be “computed” with a simple formula involving the sub-riemannian distance.Our approach relies on a microlocal analysis of translation operators in an anisotropic context. It also involves classical estimates of the heat-kernel associated to the sub-elliptic Laplacian.

How to cite

top

Mustapha, Sami, and Vigneron, François. "Construction of Sobolev spaces of fractional order with sub-riemannian vector fields." Annales de l’institut Fourier 57.4 (2007): 1023-1049. <http://eudml.org/doc/10249>.

@article{Mustapha2007,
abstract = {Given a smooth family of vector fields satisfying Chow-Hörmander’s condition of step 2 and a regularity assumption, we prove that the Sobolev spaces of fractional order constructed by the standard functional analysis can actually be “computed” with a simple formula involving the sub-riemannian distance.Our approach relies on a microlocal analysis of translation operators in an anisotropic context. It also involves classical estimates of the heat-kernel associated to the sub-elliptic Laplacian.},
affiliation = {Institut de Mathématiques de Jussieu 175, rue du Chevaleret 75013 Paris (France); Centre de Mathématiques Laurent Schwartz U.M.R. 7640 du C.N.R.S. École Polytechnique 91128 Palaiseau cedex (France)},
author = {Mustapha, Sami, Vigneron, François},
journal = {Annales de l’institut Fourier},
keywords = {functional space; Sobolev space; sub-riemannian distance; sub-elliptic Laplacian; Weyl-Hörmander calculus; sub-Riemannian distance},
language = {eng},
number = {4},
pages = {1023-1049},
publisher = {Association des Annales de l’institut Fourier},
title = {Construction of Sobolev spaces of fractional order with sub-riemannian vector fields},
url = {http://eudml.org/doc/10249},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Mustapha, Sami
AU - Vigneron, François
TI - Construction of Sobolev spaces of fractional order with sub-riemannian vector fields
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 4
SP - 1023
EP - 1049
AB - Given a smooth family of vector fields satisfying Chow-Hörmander’s condition of step 2 and a regularity assumption, we prove that the Sobolev spaces of fractional order constructed by the standard functional analysis can actually be “computed” with a simple formula involving the sub-riemannian distance.Our approach relies on a microlocal analysis of translation operators in an anisotropic context. It also involves classical estimates of the heat-kernel associated to the sub-elliptic Laplacian.
LA - eng
KW - functional space; Sobolev space; sub-riemannian distance; sub-elliptic Laplacian; Weyl-Hörmander calculus; sub-Riemannian distance
UR - http://eudml.org/doc/10249
ER -

References

top
  1. H. Bahouri, J.-Y. Chemin, C. J. Xu, Trace and trace lifting theorems in weight Sobolev spaces, Journal de l’Institut de Mathématiques de Jussieu (2005), 509-552 Zbl1089.35016
  2. A. Bellaïche, The Tangent Space in Sub-Riemannian Geometry, 144 (1996), Birkhäuser, Progress in Maths Zbl0862.53031MR1421822
  3. J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non-linéaires, Annales de l’École Normale Supérieure (1981), 209-246 Zbl0495.35024
  4. J.-M. Bony, J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. math. France (1994), 77-118 Zbl0798.35172MR1259109
  5. J.-M. Bony, N. Lerner, Quantification asymptotique et microlocalisations d’ordre supérieur I, Ann. Sci. E.N.S., 4e série 22 (1989), 377-433 Zbl0753.35005
  6. C. E. Cancelier, J.-Y. Chemin, C. J. Xu, Calcul de Weyl et opérateurs sous-elliptiques, Ann. Inst. Fourier 43 (1993), 1157-1178 Zbl0797.35008MR1252940
  7. D.-C. Chang, P. Greiner, Harmonic Analysis and Subriemannian Geometry on Heisenberg Groups, Bull. Inst. Maths. 30 (2002), 153-190 Zbl1020.35021MR1922653
  8. J.-Y. Chemin, C. J. Xu, Inclusions de Sobolev en calcul de Weyl-Hörmander et champs de vecteurs sous-elliptiques, Ann. Sci. E.N.S. 30 (1997), 719-751 Zbl0892.35161MR1476294
  9. J.-Y. Chemin, C. J. Xu, Sobolev embeddings in Weyl-Hörmander calculus, Geometrical optics and related topics (1997), 79-93, ColombiniF.F. MR2033492
  10. E. B. Davies, One parameter semi-groups, (1980), Academic Press, New York Zbl0457.47030MR591851
  11. F. Jean, Uniform Estimations of Sub-Riemannian Balls, Journal on Dynamical and Controll Systems 7 (2001), 473-500 Zbl1029.53039MR1854033
  12. D. S. Jerison, A. Sánchez-Call, Subelliptic, Second Order Differential Operators, Complex Analysis III 1277 (1986), 46-77, Lect. Notes in Maths Zbl0634.35017
  13. D. S. Jerison, A. Sánchez-Calle, Estimates for the Heat Kernel for a Sum of Squares of Vector Fields, Indiana Univ. Math. J. 35 (1986), 835-854 Zbl0639.58026MR865430
  14. R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Math. Surveys & Monographs 91 (2002), A.M.S. Zbl1044.53022MR1867362
  15. F. Vigneron, The trace problem for Sobolev spaces over the Heisenberg group, École polytechnique (2006) Zbl1152.46023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.