Construction of Sobolev spaces of fractional order with sub-riemannian vector fields
Sami Mustapha[1]; François Vigneron[2]
- [1] Institut de Mathématiques de Jussieu 175, rue du Chevaleret 75013 Paris (France)
- [2] Centre de Mathématiques Laurent Schwartz U.M.R. 7640 du C.N.R.S. École Polytechnique 91128 Palaiseau cedex (France)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 4, page 1023-1049
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMustapha, Sami, and Vigneron, François. "Construction of Sobolev spaces of fractional order with sub-riemannian vector fields." Annales de l’institut Fourier 57.4 (2007): 1023-1049. <http://eudml.org/doc/10249>.
@article{Mustapha2007,
abstract = {Given a smooth family of vector fields satisfying Chow-Hörmander’s condition of step 2 and a regularity assumption, we prove that the Sobolev spaces of fractional order constructed by the standard functional analysis can actually be “computed” with a simple formula involving the sub-riemannian distance.Our approach relies on a microlocal analysis of translation operators in an anisotropic context. It also involves classical estimates of the heat-kernel associated to the sub-elliptic Laplacian.},
affiliation = {Institut de Mathématiques de Jussieu 175, rue du Chevaleret 75013 Paris (France); Centre de Mathématiques Laurent Schwartz U.M.R. 7640 du C.N.R.S. École Polytechnique 91128 Palaiseau cedex (France)},
author = {Mustapha, Sami, Vigneron, François},
journal = {Annales de l’institut Fourier},
keywords = {functional space; Sobolev space; sub-riemannian distance; sub-elliptic Laplacian; Weyl-Hörmander calculus; sub-Riemannian distance},
language = {eng},
number = {4},
pages = {1023-1049},
publisher = {Association des Annales de l’institut Fourier},
title = {Construction of Sobolev spaces of fractional order with sub-riemannian vector fields},
url = {http://eudml.org/doc/10249},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Mustapha, Sami
AU - Vigneron, François
TI - Construction of Sobolev spaces of fractional order with sub-riemannian vector fields
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 4
SP - 1023
EP - 1049
AB - Given a smooth family of vector fields satisfying Chow-Hörmander’s condition of step 2 and a regularity assumption, we prove that the Sobolev spaces of fractional order constructed by the standard functional analysis can actually be “computed” with a simple formula involving the sub-riemannian distance.Our approach relies on a microlocal analysis of translation operators in an anisotropic context. It also involves classical estimates of the heat-kernel associated to the sub-elliptic Laplacian.
LA - eng
KW - functional space; Sobolev space; sub-riemannian distance; sub-elliptic Laplacian; Weyl-Hörmander calculus; sub-Riemannian distance
UR - http://eudml.org/doc/10249
ER -
References
top- H. Bahouri, J.-Y. Chemin, C. J. Xu, Trace and trace lifting theorems in weight Sobolev spaces, Journal de l’Institut de Mathématiques de Jussieu (2005), 509-552 Zbl1089.35016
- A. Bellaïche, The Tangent Space in Sub-Riemannian Geometry, 144 (1996), Birkhäuser, Progress in Maths Zbl0862.53031MR1421822
- J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non-linéaires, Annales de l’École Normale Supérieure (1981), 209-246 Zbl0495.35024
- J.-M. Bony, J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. math. France (1994), 77-118 Zbl0798.35172MR1259109
- J.-M. Bony, N. Lerner, Quantification asymptotique et microlocalisations d’ordre supérieur I, Ann. Sci. E.N.S., 4e série 22 (1989), 377-433 Zbl0753.35005
- C. E. Cancelier, J.-Y. Chemin, C. J. Xu, Calcul de Weyl et opérateurs sous-elliptiques, Ann. Inst. Fourier 43 (1993), 1157-1178 Zbl0797.35008MR1252940
- D.-C. Chang, P. Greiner, Harmonic Analysis and Subriemannian Geometry on Heisenberg Groups, Bull. Inst. Maths. 30 (2002), 153-190 Zbl1020.35021MR1922653
- J.-Y. Chemin, C. J. Xu, Inclusions de Sobolev en calcul de Weyl-Hörmander et champs de vecteurs sous-elliptiques, Ann. Sci. E.N.S. 30 (1997), 719-751 Zbl0892.35161MR1476294
- J.-Y. Chemin, C. J. Xu, Sobolev embeddings in Weyl-Hörmander calculus, Geometrical optics and related topics (1997), 79-93, ColombiniF.F. MR2033492
- E. B. Davies, One parameter semi-groups, (1980), Academic Press, New York Zbl0457.47030MR591851
- F. Jean, Uniform Estimations of Sub-Riemannian Balls, Journal on Dynamical and Controll Systems 7 (2001), 473-500 Zbl1029.53039MR1854033
- D. S. Jerison, A. Sánchez-Call, Subelliptic, Second Order Differential Operators, Complex Analysis III 1277 (1986), 46-77, Lect. Notes in Maths Zbl0634.35017
- D. S. Jerison, A. Sánchez-Calle, Estimates for the Heat Kernel for a Sum of Squares of Vector Fields, Indiana Univ. Math. J. 35 (1986), 835-854 Zbl0639.58026MR865430
- R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Math. Surveys & Monographs 91 (2002), A.M.S. Zbl1044.53022MR1867362
- F. Vigneron, The trace problem for Sobolev spaces over the Heisenberg group, École polytechnique (2006) Zbl1152.46023
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.