Pluricanonical maps for threefolds of general type
- [1] University of Utah Dep. of mathematics, JWB 107 155 S 1400 E RM 233 Salt Lake City TU 84112-0090 (USA)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 4, page 1315-1330
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTodorov, Gueorgui Tomov. "Pluricanonical maps for threefolds of general type." Annales de l’institut Fourier 57.4 (2007): 1315-1330. <http://eudml.org/doc/10259>.
@article{Todorov2007,
abstract = {In this paper we will prove that for a threefold of general type and large volume the second plurigenera is positive and the fifth canonical map is birational.},
affiliation = {University of Utah Dep. of mathematics, JWB 107 155 S 1400 E RM 233 Salt Lake City TU 84112-0090 (USA)},
author = {Todorov, Gueorgui Tomov},
journal = {Annales de l’institut Fourier},
keywords = {Threefolds; pluricanonical maps; extension theorems; threefolds},
language = {eng},
number = {4},
pages = {1315-1330},
publisher = {Association des Annales de l’institut Fourier},
title = {Pluricanonical maps for threefolds of general type},
url = {http://eudml.org/doc/10259},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Todorov, Gueorgui Tomov
TI - Pluricanonical maps for threefolds of general type
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 4
SP - 1315
EP - 1330
AB - In this paper we will prove that for a threefold of general type and large volume the second plurigenera is positive and the fifth canonical map is birational.
LA - eng
KW - Threefolds; pluricanonical maps; extension theorems; threefolds
UR - http://eudml.org/doc/10259
ER -
References
top- J. Chen and M. Chen and D. Zhang, The 5-canonical system on 3-folds of general type Zbl1121.14029
- F. Ambro, The locus of log canonical singularities Zbl1221.14004
- X. Benveniste, Sur les applications pluricanoniques des variété de type très général en dimension 3, Amer J. Math 108 (1986), 433-449 Zbl0601.14035MR833363
- E. Bombieri, Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ. 42 (1973), 171-219 Zbl0259.14005MR318163
- C. Hacon and J. McKernan, Boundedness of pluricanonical maps of varieties of general type Zbl1121.14011
- M. Chen, On pluricanonical maps for threefolds of general type, J.Math. Soc. Japan 50 (1998), 615-621 Zbl0916.14020MR1626342
- J. Chen and C. Hacon, Linear series of irregular varieties, (2002), World Scientific Press, Japan Zbl1094.14502MR2030451
- Y. Kawamata, On the extension problem of pluricanonical forms, Contemp. Math 241 (199), 193-207 Zbl0972.14005MR1718145
- Y. Kawamata, On Fujita’s freeness conjecture for 3-folds and 4-folds, Math. Ann. 308 (1997), 893-899 Zbl0909.14001
- J. McKernan, Boundedness of log terminal Fano pairs of bounded index
- J. Kollár, Higher direct images of sheaves I, Ann. of Math 127 (1988), 93-163
- J. Kollár, Shafarevich maps and automorphic forms, (1995), Princeton University Press, Princeton, NJ Zbl0871.14015MR1341589
- J. Kollár, S. Mori, Birational geometry of algebraic varieties, 134 (1998), Cambridge University Press, Cambridge Zbl0926.14003MR1658959
- Robert Lazarsfeld, Positivity in algebraic geometry. II, (2004), Springer-Verlag, Berlin Zbl1093.14500MR2095472
- S. Lee, Quint-canonical systems on canonical threefolds of index 1, Comm. Algebra 28 (2000), 5517-5530 Zbl1083.14518MR1808586
- S. Takayama, Pluricanonical systems on algebraic varieties of general type Zbl1108.14031
- H. Tsuiji, Pluricanonical systems of projective varieties of general type
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.