A note on functional equations for zeta functions with values in Chow motives
- [1] Universität Duisburg—Essen Standort Essen FB6, Mathematik 45117 Essen (German)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 6, page 1927-1945
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHeinloth, Franziska. "A note on functional equations for zeta functions with values in Chow motives." Annales de l’institut Fourier 57.6 (2007): 1927-1945. <http://eudml.org/doc/10282>.
@article{Heinloth2007,
abstract = {We consider zeta functions with values in the Grothendieck ring of Chow motives. Investigating the $\lambda $–structure of this ring, we deduce a functional equation for the zeta function of abelian varieties. Furthermore, we show that the property of having a rational zeta function satisfying a functional equation is preserved under products.},
affiliation = {Universität Duisburg—Essen Standort Essen FB6, Mathematik 45117 Essen (German)},
author = {Heinloth, Franziska},
journal = {Annales de l’institut Fourier},
keywords = {zeta functions; Chow motives; functional equation},
language = {eng},
number = {6},
pages = {1927-1945},
publisher = {Association des Annales de l’institut Fourier},
title = {A note on functional equations for zeta functions with values in Chow motives},
url = {http://eudml.org/doc/10282},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Heinloth, Franziska
TI - A note on functional equations for zeta functions with values in Chow motives
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 6
SP - 1927
EP - 1945
AB - We consider zeta functions with values in the Grothendieck ring of Chow motives. Investigating the $\lambda $–structure of this ring, we deduce a functional equation for the zeta function of abelian varieties. Furthermore, we show that the property of having a rational zeta function satisfying a functional equation is preserved under products.
LA - eng
KW - zeta functions; Chow motives; functional equation
UR - http://eudml.org/doc/10282
ER -
References
top- Y. André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), 17 (2004), Société Mathématique de France, Paris Zbl1060.14001MR2115000
- Y. André, Motifs de dimension finie d’après S.-I. Kimura, P. O’Sullivan,, Astérisque 299 (2005), 115-145 Zbl1080.14010
- M. F. Atiyah, D. O. Tall, Group representations, -rings and the -homomorphism, Topology 8 (1969), 253-297 Zbl0159.53301MR244387
- S. del Baño, On motives and moduli spaces of stable bundles over a curve, PhD thesis, Universitat Politècnica de Catalunya, Barcelona, 1998 Zbl1060.14050
- S. del Baño, V. Navarro Aznar, On the motive of a quotient variety, Collect. Math. 49 (1998), 203-226 Zbl0929.14033MR1677089
- A. Beauville, Sur l’anneau de Chow d’une variété abélienne, Math. Ann. 273 (1986), 647-651 Zbl0566.14003
- P. Deligne, Catégories tensorielles, Mosc. Math. J. 2 (2002), 227-248 Zbl1005.18009MR1944506
- C. Deninger, J. Murre, Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991), 201-219 Zbl0745.14003MR1133323
- W. Fulton, J. Harris, Representation theory, 129 (1991), Springer-Verlag, New York Zbl0744.22001MR1153249
- H. Gillet, C. Soulé, Descent, motives and -theory, J. Reine Angew. Math. 478 (1996), 127-176 Zbl0863.19002MR1409056
- L. Göttsche, On the motive of the Hilbert scheme of points on a surface, Math. Res. Lett. 8 (2001), 613-627 Zbl1079.14500MR1879805
- F. Guillén, V. Navarro Aznar, Un critère d’extension des foncteurs définis sur les schémas lisses, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 1-91 Zbl1075.14012
- M. Kapranov, The elliptic curve in the -duality theory and Eisenstein series for Kac-Moody groups, MSRI Preprint 2000-006
- S–I. Kimura, Chow groups are finite dimensional, in some sense, Math. Ann. 331 (2005), 173-201 Zbl1067.14006MR2107443
- K. Künnemann, A Lefschetz decomposition for Chow motives of abelian schemes, Invent. Math. 113 (1993), 85-102 Zbl0806.14001MR1223225
- K. Künnemann, On the Chow motive of an abelian scheme, Motives (Seattle, WA, 1991) 55 (1994), 189-205, Amer. Math. Soc., Providence, RI Zbl0823.14032MR1265530
- M. Larsen, V. A. Lunts, Motivic measures and stable birational geometry, Mosc. Math. J. 3 (2002), 85-95, 259 Zbl1056.14015MR1996804
- M. Larsen, V. A. Lunts, Rationality criteria for motivic zeta functions, Compos. Math. 140 (2004), 1537-1560 Zbl1076.14024MR2098401
- Yu. I. Manin, Correspondences, motifs and monoidal transformations, Mat. Sb. (N.S.) 77 (119) (1968), 475-507 Zbl0199.24803MR258836
- A. J. Scholl, Classical motives, Motives (Seattle, WA, 1991) 55 (1994), 163-187, Amer. Math. Soc., Providence, RI Zbl0814.14001MR1265529
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.