A note on functional equations for zeta functions with values in Chow motives

Franziska Heinloth[1]

  • [1] Universität Duisburg—Essen Standort Essen FB6, Mathematik 45117 Essen (German)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 6, page 1927-1945
  • ISSN: 0373-0956

Abstract

top
We consider zeta functions with values in the Grothendieck ring of Chow motives. Investigating the λ –structure of this ring, we deduce a functional equation for the zeta function of abelian varieties. Furthermore, we show that the property of having a rational zeta function satisfying a functional equation is preserved under products.

How to cite

top

Heinloth, Franziska. "A note on functional equations for zeta functions with values in Chow motives." Annales de l’institut Fourier 57.6 (2007): 1927-1945. <http://eudml.org/doc/10282>.

@article{Heinloth2007,
abstract = {We consider zeta functions with values in the Grothendieck ring of Chow motives. Investigating the $\lambda $–structure of this ring, we deduce a functional equation for the zeta function of abelian varieties. Furthermore, we show that the property of having a rational zeta function satisfying a functional equation is preserved under products.},
affiliation = {Universität Duisburg—Essen Standort Essen FB6, Mathematik 45117 Essen (German)},
author = {Heinloth, Franziska},
journal = {Annales de l’institut Fourier},
keywords = {zeta functions; Chow motives; functional equation},
language = {eng},
number = {6},
pages = {1927-1945},
publisher = {Association des Annales de l’institut Fourier},
title = {A note on functional equations for zeta functions with values in Chow motives},
url = {http://eudml.org/doc/10282},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Heinloth, Franziska
TI - A note on functional equations for zeta functions with values in Chow motives
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 6
SP - 1927
EP - 1945
AB - We consider zeta functions with values in the Grothendieck ring of Chow motives. Investigating the $\lambda $–structure of this ring, we deduce a functional equation for the zeta function of abelian varieties. Furthermore, we show that the property of having a rational zeta function satisfying a functional equation is preserved under products.
LA - eng
KW - zeta functions; Chow motives; functional equation
UR - http://eudml.org/doc/10282
ER -

References

top
  1. Y. André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), 17 (2004), Société Mathématique de France, Paris Zbl1060.14001MR2115000
  2. Y. André, Motifs de dimension finie d’après S.-I. Kimura, P. O’Sullivan, , Astérisque 299 (2005), 115-145 Zbl1080.14010
  3. M. F. Atiyah, D. O. Tall, Group representations, λ -rings and the J -homomorphism, Topology 8 (1969), 253-297 Zbl0159.53301MR244387
  4. S. del Baño, On motives and moduli spaces of stable bundles over a curve, PhD thesis, Universitat Politècnica de Catalunya, Barcelona, 1998 Zbl1060.14050
  5. S. del Baño, V. Navarro Aznar, On the motive of a quotient variety, Collect. Math. 49 (1998), 203-226 Zbl0929.14033MR1677089
  6. A. Beauville, Sur l’anneau de Chow d’une variété abélienne, Math. Ann. 273 (1986), 647-651 Zbl0566.14003
  7. P. Deligne, Catégories tensorielles, Mosc. Math. J. 2 (2002), 227-248 Zbl1005.18009MR1944506
  8. C. Deninger, J. Murre, Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991), 201-219 Zbl0745.14003MR1133323
  9. W. Fulton, J. Harris, Representation theory, 129 (1991), Springer-Verlag, New York Zbl0744.22001MR1153249
  10. H. Gillet, C. Soulé, Descent, motives and K -theory, J. Reine Angew. Math. 478 (1996), 127-176 Zbl0863.19002MR1409056
  11. L. Göttsche, On the motive of the Hilbert scheme of points on a surface, Math. Res. Lett. 8 (2001), 613-627 Zbl1079.14500MR1879805
  12. F. Guillén, V. Navarro Aznar, Un critère d’extension des foncteurs définis sur les schémas lisses, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 1-91 Zbl1075.14012
  13. M. Kapranov, The elliptic curve in the S -duality theory and Eisenstein series for Kac-Moody groups, MSRI Preprint 2000-006 
  14. S–I. Kimura, Chow groups are finite dimensional, in some sense, Math. Ann. 331 (2005), 173-201 Zbl1067.14006MR2107443
  15. K. Künnemann, A Lefschetz decomposition for Chow motives of abelian schemes, Invent. Math. 113 (1993), 85-102 Zbl0806.14001MR1223225
  16. K. Künnemann, On the Chow motive of an abelian scheme, Motives (Seattle, WA, 1991) 55 (1994), 189-205, Amer. Math. Soc., Providence, RI Zbl0823.14032MR1265530
  17. M. Larsen, V. A. Lunts, Motivic measures and stable birational geometry, Mosc. Math. J. 3 (2002), 85-95, 259 Zbl1056.14015MR1996804
  18. M. Larsen, V. A. Lunts, Rationality criteria for motivic zeta functions, Compos. Math. 140 (2004), 1537-1560 Zbl1076.14024MR2098401
  19. Yu. I. Manin, Correspondences, motifs and monoidal transformations, Mat. Sb. (N.S.) 77 (119) (1968), 475-507 Zbl0199.24803MR258836
  20. A. J. Scholl, Classical motives, Motives (Seattle, WA, 1991) 55 (1994), 163-187, Amer. Math. Soc., Providence, RI Zbl0814.14001MR1265529

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.