Finite-dimensional motives
Séminaire Bourbaki (2003-2004)
- Volume: 46, page 115-146
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topAndré, Yves. "Motifs de dimension finie." Séminaire Bourbaki 46 (2003-2004): 115-146. <http://eudml.org/doc/252130>.
@article{André2003-2004,
abstract = {On sait que les groupes de Chow d’une variété projective ne sont pas de type fini, et ne peuvent même être paramétrés par une variété algébrique, en général. Pourtant, S.-I. Kimura et P. O’Sullivan ont conjecturé (indépendamment l’un de l’autre) que les motifs de Chow, définis en termes de correspondances algébriques modulo l’équivalence rationnelle, sont de “dimension finie”au sens où, tout comme les super-fibrés vectoriels, ils sont somme d’un facteur dont une puissance extérieure est nulle et d’un facteur dont une puissance symétrique est nulle. Je présenterai la théorie de cette notion (purement catégorique), puis ses applications en géométrie algébrique.},
author = {André, Yves},
journal = {Séminaire Bourbaki},
keywords = {Chow groups; motives; tensor categories; parity},
language = {fre},
pages = {115-146},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Motifs de dimension finie},
url = {http://eudml.org/doc/252130},
volume = {46},
year = {2003-2004},
}
TY - JOUR
AU - André, Yves
TI - Motifs de dimension finie
JO - Séminaire Bourbaki
PY - 2003-2004
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 46
SP - 115
EP - 146
AB - On sait que les groupes de Chow d’une variété projective ne sont pas de type fini, et ne peuvent même être paramétrés par une variété algébrique, en général. Pourtant, S.-I. Kimura et P. O’Sullivan ont conjecturé (indépendamment l’un de l’autre) que les motifs de Chow, définis en termes de correspondances algébriques modulo l’équivalence rationnelle, sont de “dimension finie”au sens où, tout comme les super-fibrés vectoriels, ils sont somme d’un facteur dont une puissance extérieure est nulle et d’un facteur dont une puissance symétrique est nulle. Je présenterai la théorie de cette notion (purement catégorique), puis ses applications en géométrie algébrique.
LA - fre
KW - Chow groups; motives; tensor categories; parity
UR - http://eudml.org/doc/252130
ER -
References
top- [1] Y. André – Period mappings and differential equations. From to , MSJ Memoirs, vol. 12, Mathematical Society of Japan, Tokyo, 2003. Zbl1029.14006MR1978691
- [2] —, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas & Synthèses, vol. 17, Société Mathématique de France, 2004. Zbl1060.14001MR2115000
- [3] —, “Cycles de Tate et cycles motivés sur les variétés abéliennes en caractéristique ”, à paraître dans J. Inst. Math. Jussieu, 2005. Zbl1114.14016
- [4] Y. André & B. Kahn – “Nilpotence, radicaux et structures monoïdales”, Rend. Sem. Mat. Univ. Padova 108 (2002), p. 107–291, et erratum, 113 (2005). Zbl1165.18300MR1956434
- [5] —, “Construction inconditionnelle de groupes de Galois motiviques”, C. R. Acad. Sci. Paris Sér. I Math.331 (2002), p. 989–994. Zbl1052.14021MR1913723
- [6] A. Beilinson – “Height pairing between algebraic cycles”, in -theory, Arithmetic and Geometry, Lect. Notes in Math., vol. 1289, Springer, 1987, p. 27–41. Zbl0651.14002MR902590
- [7] S. Bloch – “Some elementary theorems about algebraic cycles on Abelian varieties”, Invent. Math. 37 (1976), no. 3, p. 215–228. Zbl0371.14007MR429883
- [8] —, Lectures on algebraic cycles, Math. series, vol. IV, Duke Univ., 1980. Zbl0436.14003MR558224
- [9] S. Bloch, A. Kas & D. Lieberman – “Zero-cycles on surfaces with ”, Compositio Math.33 (1976), p. 135–145. Zbl0337.14006MR435073
- [10] P. Deligne – “Catégories tannakiennes”, in Grothendieck Festschrift, vol. II, Progress in Math., vol. 87, Birkhäuser, 1990, p. 111–198. Zbl0727.14010MR1106898
- [11] —, “Catégories tensorielles”, Moscow Math. J.2 (2002), p. 227–248. Zbl1005.18009MR1944506
- [12] M. Demazure – “Motifs des variétés algébriques”, in Séminaire Bourbaki (1969/70), Lect. Notes in Math., vol. 180, Springer, Paris, 1971, Exp. no 365, p. 11–38. Zbl0247.14004
- [13] M. Green & P. Griffiths – “An interesting -cycle”, Duke Math. J.119 (2003), p. 261–313. Zbl1058.14014MR1997947
- [14] V. Guletskiĭ – “Finite dimensional objects in distinguished triangles”, prépublication http://www.math.uiuc.edu/K-theory/0637. Zbl1102.14003
- [15] V. Guletskiĭ & C. Pedrini – “The Chow motive of the Godeaux surface”, in Algebraic Geometry (in memory of P. Francia), de Gruyter, 2002, p. 179–195. Zbl1054.14009MR1954064
- [16] —, “Finite dimensional motives and the conjectures of Beilinson and Murre”, -Theory 550 (2003), p. 1–21. Zbl1060.19001MR2064241
- [17] G. Higman – “On a conjecture of Nagata”, Math. Proc. Cambridge Philos. Soc.52 (1956), p. 1–4. Zbl0072.02502MR73581
- [18] U. Jannsen – “Motives, numerical equivalence and semi-simplicity”, Invent. Math.107 (1992), p. 447–452. Zbl0762.14003MR1150598
- [19] —, “Motivic sheaves and filtrations on Chow groups”, in Motives (Seattle, WA, 1991), vol. I, Proc. Sympos. Pure Math., vol. 55, American Mathematical Society, 1994, p. 245–302. MR1265533
- [20] —, “Equivalence relations on algebraic cycles”, in The arithmetic and Geometry of algebraic cycles, proc. NATO conference (Banff, 1998), NATO series, vol. 548, Kluwer, 2000, p. 225–260. Zbl0988.14003MR1744947
- [21] B. Kahn – “Équivalences rationnelle et numérique sur certaines variétés de type abélien sur un corps fini”, Ann. scient. Éc. Norm. Sup. série 36 (2003), no. 6, p. 977–1002. Zbl1073.14034MR2032532
- [22] M. Kapranov – “The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups”, prépub. ArXiv AG/0001005, 2000.
- [23] F. Kato – “An overview of -adic uniformization”, in Period mappings and differential equations. From to [1], appendice 2.
- [24] T. Katsura & T. Shioda – “On Fermat varieties”, Tôhoku Math. J.31 (1979), p. 97–115. Zbl0415.14022MR526513
- [25] N. Katz & W. Messing – “Some consequences of the Riemann hypothesis for varieties over finite fields”, Invent. Math.23 (1974), p. 73–77. Zbl0275.14011MR332791
- [26] S.-I. Kimura – “Chow motives can be finite-dimensional, in some sense”, Math. Ann.331 (2005), p. 173–201. Zbl1067.14006MR2107443
- [27] S. Kleiman – “Algebraic cycles and the Weil conjectures”, in Dix exposés sur la cohomologie des schémas, North Holland, Masson, 1968, p. 359–386. Zbl0198.25902MR292838
- [28] —, “Finiteness theorems for algebraic cycles”, in Actes Congrès intern. math. (Nice, 1970), tome 1, Gauthier-Villars, 1970, p. 445–449. Zbl0238.14005MR424807
- [29] M. Larsen & V. Lunts – “Rationality criteria for motivic zeta-functions”, prépub. ArXiv AG/0212158, 2002. Zbl1076.14024MR2098401
- [30] S. Lichtenbaum – “Values of zeta functions at non-negative integers”, Lect. Notes in Math., vol. 1068, Springer, 1984, p. 127–138. Zbl0591.14014MR756089
- [31] D. Lieberman – “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math.90 (1968), p. 366–374. Zbl0159.50501MR230336
- [32] D. Luna – “Théorème du slice étale”, in Sur les groupes algébriques, Mém. Soc. Math. France, vol. 33, Société Mathématique de France, 1973, p. 81–105. Zbl0286.14014MR342523
- [33] I. Macdonald – Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979. Zbl0899.05068MR553598
- [34] A. Magid – “Equivariant completions of rings with reductive group action”, J. Pure Appl. Algebra49 (1987), p. 173–185. Zbl0655.14019MR920520
- [35] C. Mazza – “Schur functors and motives”, Prépublication http://www.math.uiuc.edu/K-theory/0641. Zbl1071.14026MR2705521
- [36] B. Mitchell – “Rings with several objects”, Adv. in Math.8 (1972), p. 1–161. Zbl0232.18009MR294454
- [37] D. Mumford – “Rational equivalence of zero-cycles on surfaces”, J. Math. Kyoto Univ.9 (1969), p. 195–204. Zbl0184.46603MR249428
- [38] J. Murre – “On the motive of an algebraic surface”, J. reine angew. Math. 409 (1990), p. 190–204. Zbl0698.14032MR1061525
- [39] —, “On a conjectural filtration on the Chow groups of an algebraic variety I, II”, Indag. Math.4 (1993), p. 177–201. Zbl0805.14001
- [40] P. O’Sullivan – Papiers secrets. Deux lettres à Y. André et B. Kahn, 29/4/02, 12/5/02. Deux projets de notes aux CRAS.
- [41] —, “The structure of certain rigid tensor categories”, soumis. Zbl1064.18007
- [42] A. Roitman – “Rational equivalence of zero-cycles”, Math. USSR-Sb. 18 (1972), p. 571–588. Zbl0273.14001
- [43] N. Saavedra Rivano – Catégories tannakiennes, Lect. Notes in Math., vol. 265, Springer, 1972. Zbl0241.14008MR338002
- [44] M. Saito – “Bloch’s conjecture and Chow motives”, preprint RIMS, 2000.
- [45] P. Samuel – “Relations d’équivalence en géométrie algébrique”, in Proc. Internat. Congress Math., 1958, Cambridge Univ. Press, 1960, p. 470–487. Zbl0119.36901MR116010
- [46] A. Shermenev – “The motive of an abelian variety”, Functional Anal. Appl.8 (1974), p. 47–53. Zbl0294.14003
- [47] M. Spieß – “Proof of the Tate conjecture for products of elliptic curves over finite fields”, Math. Ann.314 (1999), p. 285–290. Zbl0941.11026MR1697446
- [48] J. Tate – “Conjectures on algebraic cycles in -adic cohomology”, in Motives (Seattle, WA, 1991), vol. I, Proc. Sympos. Pure Math., vol. 55, American Mathematical Society, 1994, p. 71–83. Zbl0814.14009MR1265523
- [49] V. Voevodsky – “A nilpotence theorem for cycles algebraically equivalent to zero”, Internat. Math. Res. Notices4 (1995), p. 1–12. Zbl0861.14006MR1326064
- [50] C. Voisin – Théorie de Hodge et géométrie algébrique complexe, Cours spécialisés, vol. 10, Société Mathématique de France, Paris, 2002. Zbl1032.14001MR1988456
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.