Finite-dimensional motives
Séminaire Bourbaki (2003-2004)
- Volume: 46, page 115-146
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Y. André – Period mappings and differential equations. From to , MSJ Memoirs, vol. 12, Mathematical Society of Japan, Tokyo, 2003. Zbl1029.14006MR1978691
- [2] —, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas & Synthèses, vol. 17, Société Mathématique de France, 2004. Zbl1060.14001MR2115000
- [3] —, “Cycles de Tate et cycles motivés sur les variétés abéliennes en caractéristique ”, à paraître dans J. Inst. Math. Jussieu, 2005. Zbl1114.14016
- [4] Y. André & B. Kahn – “Nilpotence, radicaux et structures monoïdales”, Rend. Sem. Mat. Univ. Padova 108 (2002), p. 107–291, et erratum, 113 (2005). Zbl1165.18300MR1956434
- [5] —, “Construction inconditionnelle de groupes de Galois motiviques”, C. R. Acad. Sci. Paris Sér. I Math.331 (2002), p. 989–994. Zbl1052.14021MR1913723
- [6] A. Beilinson – “Height pairing between algebraic cycles”, in -theory, Arithmetic and Geometry, Lect. Notes in Math., vol. 1289, Springer, 1987, p. 27–41. Zbl0651.14002MR902590
- [7] S. Bloch – “Some elementary theorems about algebraic cycles on Abelian varieties”, Invent. Math. 37 (1976), no. 3, p. 215–228. Zbl0371.14007MR429883
- [8] —, Lectures on algebraic cycles, Math. series, vol. IV, Duke Univ., 1980. Zbl0436.14003MR558224
- [9] S. Bloch, A. Kas & D. Lieberman – “Zero-cycles on surfaces with ”, Compositio Math.33 (1976), p. 135–145. Zbl0337.14006MR435073
- [10] P. Deligne – “Catégories tannakiennes”, in Grothendieck Festschrift, vol. II, Progress in Math., vol. 87, Birkhäuser, 1990, p. 111–198. Zbl0727.14010MR1106898
- [11] —, “Catégories tensorielles”, Moscow Math. J.2 (2002), p. 227–248. Zbl1005.18009MR1944506
- [12] M. Demazure – “Motifs des variétés algébriques”, in Séminaire Bourbaki (1969/70), Lect. Notes in Math., vol. 180, Springer, Paris, 1971, Exp. no 365, p. 11–38. Zbl0247.14004
- [13] M. Green & P. Griffiths – “An interesting -cycle”, Duke Math. J.119 (2003), p. 261–313. Zbl1058.14014MR1997947
- [14] V. Guletskiĭ – “Finite dimensional objects in distinguished triangles”, prépublication http://www.math.uiuc.edu/K-theory/0637. Zbl1102.14003
- [15] V. Guletskiĭ & C. Pedrini – “The Chow motive of the Godeaux surface”, in Algebraic Geometry (in memory of P. Francia), de Gruyter, 2002, p. 179–195. Zbl1054.14009MR1954064
- [16] —, “Finite dimensional motives and the conjectures of Beilinson and Murre”, -Theory 550 (2003), p. 1–21. Zbl1060.19001MR2064241
- [17] G. Higman – “On a conjecture of Nagata”, Math. Proc. Cambridge Philos. Soc.52 (1956), p. 1–4. Zbl0072.02502MR73581
- [18] U. Jannsen – “Motives, numerical equivalence and semi-simplicity”, Invent. Math.107 (1992), p. 447–452. Zbl0762.14003MR1150598
- [19] —, “Motivic sheaves and filtrations on Chow groups”, in Motives (Seattle, WA, 1991), vol. I, Proc. Sympos. Pure Math., vol. 55, American Mathematical Society, 1994, p. 245–302. MR1265533
- [20] —, “Equivalence relations on algebraic cycles”, in The arithmetic and Geometry of algebraic cycles, proc. NATO conference (Banff, 1998), NATO series, vol. 548, Kluwer, 2000, p. 225–260. Zbl0988.14003MR1744947
- [21] B. Kahn – “Équivalences rationnelle et numérique sur certaines variétés de type abélien sur un corps fini”, Ann. scient. Éc. Norm. Sup. série 36 (2003), no. 6, p. 977–1002. Zbl1073.14034MR2032532
- [22] M. Kapranov – “The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups”, prépub. ArXiv AG/0001005, 2000.
- [23] F. Kato – “An overview of -adic uniformization”, in Period mappings and differential equations. From to [1], appendice 2.
- [24] T. Katsura & T. Shioda – “On Fermat varieties”, Tôhoku Math. J.31 (1979), p. 97–115. Zbl0415.14022MR526513
- [25] N. Katz & W. Messing – “Some consequences of the Riemann hypothesis for varieties over finite fields”, Invent. Math.23 (1974), p. 73–77. Zbl0275.14011MR332791
- [26] S.-I. Kimura – “Chow motives can be finite-dimensional, in some sense”, Math. Ann.331 (2005), p. 173–201. Zbl1067.14006MR2107443
- [27] S. Kleiman – “Algebraic cycles and the Weil conjectures”, in Dix exposés sur la cohomologie des schémas, North Holland, Masson, 1968, p. 359–386. Zbl0198.25902MR292838
- [28] —, “Finiteness theorems for algebraic cycles”, in Actes Congrès intern. math. (Nice, 1970), tome 1, Gauthier-Villars, 1970, p. 445–449. Zbl0238.14005MR424807
- [29] M. Larsen & V. Lunts – “Rationality criteria for motivic zeta-functions”, prépub. ArXiv AG/0212158, 2002. Zbl1076.14024MR2098401
- [30] S. Lichtenbaum – “Values of zeta functions at non-negative integers”, Lect. Notes in Math., vol. 1068, Springer, 1984, p. 127–138. Zbl0591.14014MR756089
- [31] D. Lieberman – “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math.90 (1968), p. 366–374. Zbl0159.50501MR230336
- [32] D. Luna – “Théorème du slice étale”, in Sur les groupes algébriques, Mém. Soc. Math. France, vol. 33, Société Mathématique de France, 1973, p. 81–105. Zbl0286.14014MR342523
- [33] I. Macdonald – Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979. Zbl0899.05068MR553598
- [34] A. Magid – “Equivariant completions of rings with reductive group action”, J. Pure Appl. Algebra49 (1987), p. 173–185. Zbl0655.14019MR920520
- [35] C. Mazza – “Schur functors and motives”, Prépublication http://www.math.uiuc.edu/K-theory/0641. Zbl1071.14026MR2705521
- [36] B. Mitchell – “Rings with several objects”, Adv. in Math.8 (1972), p. 1–161. Zbl0232.18009MR294454
- [37] D. Mumford – “Rational equivalence of zero-cycles on surfaces”, J. Math. Kyoto Univ.9 (1969), p. 195–204. Zbl0184.46603MR249428
- [38] J. Murre – “On the motive of an algebraic surface”, J. reine angew. Math. 409 (1990), p. 190–204. Zbl0698.14032MR1061525
- [39] —, “On a conjectural filtration on the Chow groups of an algebraic variety I, II”, Indag. Math.4 (1993), p. 177–201. Zbl0805.14001
- [40] P. O’Sullivan – Papiers secrets. Deux lettres à Y. André et B. Kahn, 29/4/02, 12/5/02. Deux projets de notes aux CRAS.
- [41] —, “The structure of certain rigid tensor categories”, soumis. Zbl1064.18007
- [42] A. Roitman – “Rational equivalence of zero-cycles”, Math. USSR-Sb. 18 (1972), p. 571–588. Zbl0273.14001
- [43] N. Saavedra Rivano – Catégories tannakiennes, Lect. Notes in Math., vol. 265, Springer, 1972. Zbl0241.14008MR338002
- [44] M. Saito – “Bloch’s conjecture and Chow motives”, preprint RIMS, 2000.
- [45] P. Samuel – “Relations d’équivalence en géométrie algébrique”, in Proc. Internat. Congress Math., 1958, Cambridge Univ. Press, 1960, p. 470–487. Zbl0119.36901MR116010
- [46] A. Shermenev – “The motive of an abelian variety”, Functional Anal. Appl.8 (1974), p. 47–53. Zbl0294.14003
- [47] M. Spieß – “Proof of the Tate conjecture for products of elliptic curves over finite fields”, Math. Ann.314 (1999), p. 285–290. Zbl0941.11026MR1697446
- [48] J. Tate – “Conjectures on algebraic cycles in -adic cohomology”, in Motives (Seattle, WA, 1991), vol. I, Proc. Sympos. Pure Math., vol. 55, American Mathematical Society, 1994, p. 71–83. Zbl0814.14009MR1265523
- [49] V. Voevodsky – “A nilpotence theorem for cycles algebraically equivalent to zero”, Internat. Math. Res. Notices4 (1995), p. 1–12. Zbl0861.14006MR1326064
- [50] C. Voisin – Théorie de Hodge et géométrie algébrique complexe, Cours spécialisés, vol. 10, Société Mathématique de France, Paris, 2002. Zbl1032.14001MR1988456