Bernstein-Sato Polynomials and Spectral Numbers

Andréa G. Guimarães[1]; Abramo Hefez[2]

  • [1] Universidade Estadual do Rio de Janeiro IME R. São Francisco Xavier, 524, 6 o andar 20550-013 Rio de Janeiro, RJ (Brasil)
  • [2] Universidade Federal Fluminense Instituto de Matemática R. Mário Santos Braga, s/n 24020-140 Niterói, RJ (Brasil)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 6, page 2031-2040
  • ISSN: 0373-0956

Abstract

top
In this paper we will describe a set of roots of the Bernstein-Sato polynomial associated to a germ of complex analytic function in several variables, with an isolated critical point at the origin, that may be obtained by only knowing the spectral numbers of the germ. This will also give us a set of common roots of the Bernstein-Sato polynomials associated to the members of a μ -constant family of germs of functions. An example will show that this set may sometimes consist of all common roots.

How to cite

top

Guimarães, Andréa G., and Hefez, Abramo. "Bernstein-Sato Polynomials and Spectral Numbers." Annales de l’institut Fourier 57.6 (2007): 2031-2040. <http://eudml.org/doc/10286>.

@article{Guimarães2007,
abstract = {In this paper we will describe a set of roots of the Bernstein-Sato polynomial associated to a germ of complex analytic function in several variables, with an isolated critical point at the origin, that may be obtained by only knowing the spectral numbers of the germ. This will also give us a set of common roots of the Bernstein-Sato polynomials associated to the members of a $\mu $-constant family of germs of functions. An example will show that this set may sometimes consist of all common roots.},
affiliation = {Universidade Estadual do Rio de Janeiro IME R. São Francisco Xavier, 524, 6 o andar 20550-013 Rio de Janeiro, RJ (Brasil); Universidade Federal Fluminense Instituto de Matemática R. Mário Santos Braga, s/n 24020-140 Niterói, RJ (Brasil)},
author = {Guimarães, Andréa G., Hefez, Abramo},
journal = {Annales de l’institut Fourier},
keywords = {Bernstein polynomial; Spectral numbers; Gauss-Manin connection and Brieskorn lattice; spectral numbers},
language = {eng},
number = {6},
pages = {2031-2040},
publisher = {Association des Annales de l’institut Fourier},
title = {Bernstein-Sato Polynomials and Spectral Numbers},
url = {http://eudml.org/doc/10286},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Guimarães, Andréa G.
AU - Hefez, Abramo
TI - Bernstein-Sato Polynomials and Spectral Numbers
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 6
SP - 2031
EP - 2040
AB - In this paper we will describe a set of roots of the Bernstein-Sato polynomial associated to a germ of complex analytic function in several variables, with an isolated critical point at the origin, that may be obtained by only knowing the spectral numbers of the germ. This will also give us a set of common roots of the Bernstein-Sato polynomials associated to the members of a $\mu $-constant family of germs of functions. An example will show that this set may sometimes consist of all common roots.
LA - eng
KW - Bernstein polynomial; Spectral numbers; Gauss-Manin connection and Brieskorn lattice; spectral numbers
UR - http://eudml.org/doc/10286
ER -

References

top
  1. I. N. Bernstein, The analytic continuation of generalized functions with respect to a parameter, Funct. Anal. Appl. 6 (1972), 273-285 Zbl0282.46038MR320735
  2. J.-E. Björk, Rings of differential operators, 21 (1979), North-Holland Publishing Co., Amsterdam Zbl0499.13009MR549189
  3. J. Briançon, M. Granger, Ph. Maisonobe, M. Miniconi, Algorithme de calcul du polynôme de Bernstein: cas non dégénéré, Ann. Inst. Fourier (Grenoble) 39 (1989), 553-610 Zbl0675.32008MR1030839
  4. E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103-161 Zbl0186.26101MR267607
  5. P. Cassous-Noguès, Racines de polynômes de Bernstein, Ann. Inst. Fourier (Grenoble) 36 (1986), 1-30 Zbl0597.32004MR867914
  6. P. Cassous-Noguès, Comportement du polynômes de Bernstein lors d’une déformation à μ -constant de x a + y b avec ( a , b ) = 1 , Compositio Math. 63 (1987), 291-313 Zbl0624.32006
  7. C. Hertling, C. Stahlke, Bernstein polynomial and Tjurina number, Geom. Dedicata 75 (1999), 137-176 Zbl0955.32022MR1686755
  8. M. Kashiwara, B-function and holonomic system, Invent. Math. 38 (1976), 33-53 Zbl0354.35082MR430304
  9. Valentine S. Kulikov, Mixed Hodge structures and singularities, 132 (1998), Cambridge University Press, Cambridge Zbl0902.14005MR1621831
  10. B. Malgrange, Intègrales asymptotiques et monodromie, Ann. Sci. École Norm. Sup. 7 (1974), 405-430 Zbl0305.32008MR372243
  11. B. Malgrange, Le polynôme de Bernstein d’une singularité isolèe, Lecture Notes in Math. 459 (1975), 98-119, Springer-Verlag Zbl0308.32007
  12. F. Pham, Singularités des systèmes différentiels de Gauss-Manin, Progr. Math. 2 (1979), Birkhäuser Zbl0524.32015MR553954
  13. M. Saito, On the structure of Brieskorn lattice, Ann. Inst. Fourier (Grenoble) 39 (1989), 27-72 Zbl0644.32005MR1011977
  14. M. Saito, On b -function, spectrum and rational singularity, Math. Ann. 295 (1993), 51-74 Zbl0788.32025MR1198841
  15. J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Nordic Summer School Symposium in Math., Oslo (1976), 525-562 Zbl0373.14007MR485870
  16. A. N. Varchenko, The complex of a singularity does not change along the stratum μ -constant, Funct. Anal. Appl. 16 (1982), 1-9 Zbl0498.32010MR648803
  17. A. N. Varchenko, A. G. Khovanskii, Asymptotics of integrals over vanishing cycles and the Newton polyhedron, Soviet Math. Dokl. 32 (1985), 122-127 Zbl0595.32012
  18. T. Yano, On the theory of b -functions, RIMS, Kyoto Univ. 14 (1978), 11-202 Zbl0389.32005MR499664

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.