Convergence of Bergman geodesics on
Jian Song[1]; Steve Zelditch[2]
- [1] Rutgers, The State University of New Jersey Department of Mathematics Hill Center-Busch Campus 110 Frelinghuysen Rd Piscataway, NJ 08854-8019 (USA)
 - [2] Johns Hopkins University Department of Mathematics Baltimore, MD 21218 (USA)
 
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 7, page 2209-2237
 - ISSN: 0373-0956
 
Access Full Article
topAbstract
topHow to cite
topSong, Jian, and Zelditch, Steve. "Convergence of Bergman geodesics on $\mathbf{CP}^1$." Annales de l’institut Fourier 57.7 (2007): 2209-2237. <http://eudml.org/doc/10296>.
@article{Song2007,
	abstract = {The space $\mathcal\{H\}$ of Kähler metrics in a fixed Kähler class on a projective Kähler manifold $X$ is an infinite dimensional symmetric space whose geodesics $\omega _t$ are solutions of a homogeneous complex Monge-Ampère equation in $A \times X$, where $A \subset \mathbb\{C\}$ is an annulus. Phong-Sturm have proven that the Monge-Ampère geodesic of Kähler potentials $\varphi (t, z)$ of $\omega _t$ may be approximated in a weak $C^0$ sense by geodesics $\varphi _N(t, z) $ of the finite dimensional symmetric space of Bergman metrics of height $N$. In this article we prove that $\varphi _N(t, z) \rightarrow \varphi (t,z)$ in $C^2([0,1] \times X)$ in the case of toric Kähler metrics on $X = \mathbf\{CP\}^1$.},
	affiliation = {Rutgers, The State University of New Jersey Department of Mathematics Hill Center-Busch Campus 110 Frelinghuysen Rd Piscataway, NJ 08854-8019 (USA); Johns Hopkins University Department of Mathematics Baltimore, MD 21218 (USA)},
	author = {Song, Jian, Zelditch, Steve},
	journal = {Annales de l’institut Fourier},
	keywords = {Bergman metric; Monge-Ampère equation; Bergman-Szegö kernel; toric metric; Kähler potential; symplectic potential},
	language = {eng},
	number = {7},
	pages = {2209-2237},
	publisher = {Association des Annales de l’institut Fourier},
	title = {Convergence of Bergman geodesics on $\mathbf\{CP\}^1$},
	url = {http://eudml.org/doc/10296},
	volume = {57},
	year = {2007},
}
TY  - JOUR
AU  - Song, Jian
AU  - Zelditch, Steve
TI  - Convergence of Bergman geodesics on $\mathbf{CP}^1$
JO  - Annales de l’institut Fourier
PY  - 2007
PB  - Association des Annales de l’institut Fourier
VL  - 57
IS  - 7
SP  - 2209
EP  - 2237
AB  - The space $\mathcal{H}$ of Kähler metrics in a fixed Kähler class on a projective Kähler manifold $X$ is an infinite dimensional symmetric space whose geodesics $\omega _t$ are solutions of a homogeneous complex Monge-Ampère equation in $A \times X$, where $A \subset \mathbb{C}$ is an annulus. Phong-Sturm have proven that the Monge-Ampère geodesic of Kähler potentials $\varphi (t, z)$ of $\omega _t$ may be approximated in a weak $C^0$ sense by geodesics $\varphi _N(t, z) $ of the finite dimensional symmetric space of Bergman metrics of height $N$. In this article we prove that $\varphi _N(t, z) \rightarrow \varphi (t,z)$ in $C^2([0,1] \times X)$ in the case of toric Kähler metrics on $X = \mathbf{CP}^1$.
LA  - eng
KW  - Bergman metric; Monge-Ampère equation; Bergman-Szegö kernel; toric metric; Kähler potential; symplectic potential
UR  - http://eudml.org/doc/10296
ER  - 
References
top- Miguel Abreu, Kähler geometry of toric manifolds in symplectic coordinates, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001) 35 (2003), 1-24, Amer. Math. Soc., Providence, RI Zbl1044.53051MR1969265
 - Claudio Arezzo, Gang Tian, Infinite geodesic rays in the space of Kähler potentials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), 617-630 Zbl1170.32312MR2040638
 - B. Berndtsson, Positivity of direct image bundles and convexity on the space of Kähler metrics Zbl1187.53076
 - M. Biskup, C. Borgs, J. T. Chayes, L. J. Kleinwaks, R. Kotecký, Partition function zeros at first-order phase transitions: a general analysis, Comm. Math. Phys. 251 (2004), 79-131 Zbl1088.82010MR2096735
 - Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry 102 (1982), 259-290, Princeton Univ. Press, Princeton, N.J. Zbl0487.53057MR645743
 - X. Chen, G. Tian, Geometry of Kähler metrics and foliations by discs Zbl1182.32009
 - Xiuxiong Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), 189-234 Zbl1041.58003MR1863016
 - S. K. Donaldson, Some numerical results in complex differential geometry Zbl1178.32018
 - S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar 196 (1999), 13-33, Amer. Math. Soc., Providence, RI Zbl0972.53025MR1736211
 - S. K. Donaldson, Scalar curvature and projective embeddings. I, J. Differential Geom. 59 (2001), 479-522 Zbl1052.32017MR1916953
 - S. K. Donaldson, Holomorphic discs and the complex Monge-Ampère equation, J. Symplectic Geom. 1 (2002), 171-196 Zbl1035.53102MR1959581
 - S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), 289-349 Zbl1074.53059MR1988506
 - Richard S. Ellis, Entropy, large deviations, and statistical mechanics, 271 (1985), Springer-Verlag, New York Zbl0566.60097MR793553
 - William Fulton, Introduction to toric varieties, 131 (1993), Princeton University Press, Princeton, NJ Zbl0813.14039MR1234037
 - Daniel Guan, On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles, Math. Res. Lett. 6 (1999), 547-555 Zbl0968.53050MR1739213
 - Victor Guillemin, Kähler structures on toric varieties, J. Differential Geom. 40 (1994), 285-309 Zbl0813.53042MR1293656
 - Lars Hörmander, The analysis of linear partial differential operators. I, (1990), Springer-Verlag, Berlin Zbl1028.35001MR1065136
 - Toshiki Mabuchi, Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math. 24 (1987), 227-252 Zbl0645.53038MR909015
 - D. H. Phong, Jacob Sturm, The Monge-Ampère operator and geodesics in the space of Kähler potentials, Invent. Math. 166 (2006), 125-149 Zbl1120.32026MR2242635
 - Stephen Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), 495-550 Zbl0790.32017MR1165352
 - Stephen Semmes, The homogeneous complex Monge-Ampère equation and the infinite-dimensional versions of classic symmetric spaces, The Gelfand Mathematical Seminars, 1993–1995 (1996), 225-242, Birkhäuser Boston, Boston, MA Zbl0860.35031MR1398924
 - Bernard Shiffman, Tatsuya Tate, Steve Zelditch, Harmonic analysis on toric varieties, Explorations in complex and Riemannian geometry 332 (2003), 267-286, Amer. Math. Soc., Providence, RI Zbl1041.32004MR2018345
 - Bernard Shiffman, Tatsuya Tate, Steve Zelditch, Distribution laws for integrable eigenfunctions, Ann. Inst. Fourier (Grenoble) 54 (2004), 1497-1546 Zbl1081.35063MR2127856
 - Jian Song, The -invariant on toric Fano manifolds, Amer. J. Math. 127 (2005), 1247-1259 Zbl1088.32012MR2183524
 - Jian Song, S. Zelditch, Bergman metrics and geodesics in the space of Kähler metrics on toric varieties Zbl1282.35428
 - Gang Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), 99-130 Zbl0706.53036MR1064867
 - Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), 339-411 Zbl0369.53059MR480350
 - Shing-Tung Yau, Open problems in geometry, Chern—a great geometer of the twentieth century (1992), 275-319, Int. Press, Hong Kong Zbl0826.01010MR1201338
 - Steve Zelditch, Bernstein polynomials, Bergman kernels and toric Kähler varieties Zbl1178.32019
 - Steve Zelditch, Szegő kernels and a theorem of Tian, Internat. Math. Res. Notices (1998), 317-331 Zbl0922.58082MR1616718
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.