Convergence of Bergman geodesics on CP 1

Jian Song[1]; Steve Zelditch[2]

  • [1] Rutgers, The State University of New Jersey Department of Mathematics Hill Center-Busch Campus 110 Frelinghuysen Rd Piscataway, NJ 08854-8019 (USA)
  • [2] Johns Hopkins University Department of Mathematics Baltimore, MD 21218 (USA)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 7, page 2209-2237
  • ISSN: 0373-0956

Abstract

top
The space of Kähler metrics in a fixed Kähler class on a projective Kähler manifold X is an infinite dimensional symmetric space whose geodesics ω t are solutions of a homogeneous complex Monge-Ampère equation in A × X , where A is an annulus. Phong-Sturm have proven that the Monge-Ampère geodesic of Kähler potentials ϕ ( t , z ) of ω t may be approximated in a weak C 0 sense by geodesics ϕ N ( t , z ) of the finite dimensional symmetric space of Bergman metrics of height N . In this article we prove that ϕ N ( t , z ) ϕ ( t , z ) in C 2 ( [ 0 , 1 ] × X ) in the case of toric Kähler metrics on X = CP 1 .

How to cite

top

Song, Jian, and Zelditch, Steve. "Convergence of Bergman geodesics on $\mathbf{CP}^1$." Annales de l’institut Fourier 57.7 (2007): 2209-2237. <http://eudml.org/doc/10296>.

@article{Song2007,
abstract = {The space $\mathcal\{H\}$ of Kähler metrics in a fixed Kähler class on a projective Kähler manifold $X$ is an infinite dimensional symmetric space whose geodesics $\omega _t$ are solutions of a homogeneous complex Monge-Ampère equation in $A \times X$, where $A \subset \mathbb\{C\}$ is an annulus. Phong-Sturm have proven that the Monge-Ampère geodesic of Kähler potentials $\varphi (t, z)$ of $\omega _t$ may be approximated in a weak $C^0$ sense by geodesics $\varphi _N(t, z) $ of the finite dimensional symmetric space of Bergman metrics of height $N$. In this article we prove that $\varphi _N(t, z) \rightarrow \varphi (t,z)$ in $C^2([0,1] \times X)$ in the case of toric Kähler metrics on $X = \mathbf\{CP\}^1$.},
affiliation = {Rutgers, The State University of New Jersey Department of Mathematics Hill Center-Busch Campus 110 Frelinghuysen Rd Piscataway, NJ 08854-8019 (USA); Johns Hopkins University Department of Mathematics Baltimore, MD 21218 (USA)},
author = {Song, Jian, Zelditch, Steve},
journal = {Annales de l’institut Fourier},
keywords = {Bergman metric; Monge-Ampère equation; Bergman-Szegö kernel; toric metric; Kähler potential; symplectic potential},
language = {eng},
number = {7},
pages = {2209-2237},
publisher = {Association des Annales de l’institut Fourier},
title = {Convergence of Bergman geodesics on $\mathbf\{CP\}^1$},
url = {http://eudml.org/doc/10296},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Song, Jian
AU - Zelditch, Steve
TI - Convergence of Bergman geodesics on $\mathbf{CP}^1$
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2209
EP - 2237
AB - The space $\mathcal{H}$ of Kähler metrics in a fixed Kähler class on a projective Kähler manifold $X$ is an infinite dimensional symmetric space whose geodesics $\omega _t$ are solutions of a homogeneous complex Monge-Ampère equation in $A \times X$, where $A \subset \mathbb{C}$ is an annulus. Phong-Sturm have proven that the Monge-Ampère geodesic of Kähler potentials $\varphi (t, z)$ of $\omega _t$ may be approximated in a weak $C^0$ sense by geodesics $\varphi _N(t, z) $ of the finite dimensional symmetric space of Bergman metrics of height $N$. In this article we prove that $\varphi _N(t, z) \rightarrow \varphi (t,z)$ in $C^2([0,1] \times X)$ in the case of toric Kähler metrics on $X = \mathbf{CP}^1$.
LA - eng
KW - Bergman metric; Monge-Ampère equation; Bergman-Szegö kernel; toric metric; Kähler potential; symplectic potential
UR - http://eudml.org/doc/10296
ER -

References

top
  1. Miguel Abreu, Kähler geometry of toric manifolds in symplectic coordinates, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001) 35 (2003), 1-24, Amer. Math. Soc., Providence, RI Zbl1044.53051MR1969265
  2. Claudio Arezzo, Gang Tian, Infinite geodesic rays in the space of Kähler potentials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), 617-630 Zbl1170.32312MR2040638
  3. B. Berndtsson, Positivity of direct image bundles and convexity on the space of Kähler metrics Zbl1187.53076
  4. M. Biskup, C. Borgs, J. T. Chayes, L. J. Kleinwaks, R. Kotecký, Partition function zeros at first-order phase transitions: a general analysis, Comm. Math. Phys. 251 (2004), 79-131 Zbl1088.82010MR2096735
  5. Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry 102 (1982), 259-290, Princeton Univ. Press, Princeton, N.J. Zbl0487.53057MR645743
  6. X. Chen, G. Tian, Geometry of Kähler metrics and foliations by discs Zbl1182.32009
  7. Xiuxiong Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), 189-234 Zbl1041.58003MR1863016
  8. S. K. Donaldson, Some numerical results in complex differential geometry Zbl1178.32018
  9. S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar 196 (1999), 13-33, Amer. Math. Soc., Providence, RI Zbl0972.53025MR1736211
  10. S. K. Donaldson, Scalar curvature and projective embeddings. I, J. Differential Geom. 59 (2001), 479-522 Zbl1052.32017MR1916953
  11. S. K. Donaldson, Holomorphic discs and the complex Monge-Ampère equation, J. Symplectic Geom. 1 (2002), 171-196 Zbl1035.53102MR1959581
  12. S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), 289-349 Zbl1074.53059MR1988506
  13. Richard S. Ellis, Entropy, large deviations, and statistical mechanics, 271 (1985), Springer-Verlag, New York Zbl0566.60097MR793553
  14. William Fulton, Introduction to toric varieties, 131 (1993), Princeton University Press, Princeton, NJ Zbl0813.14039MR1234037
  15. Daniel Guan, On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles, Math. Res. Lett. 6 (1999), 547-555 Zbl0968.53050MR1739213
  16. Victor Guillemin, Kähler structures on toric varieties, J. Differential Geom. 40 (1994), 285-309 Zbl0813.53042MR1293656
  17. Lars Hörmander, The analysis of linear partial differential operators. I, (1990), Springer-Verlag, Berlin Zbl1028.35001MR1065136
  18. Toshiki Mabuchi, Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math. 24 (1987), 227-252 Zbl0645.53038MR909015
  19. D. H. Phong, Jacob Sturm, The Monge-Ampère operator and geodesics in the space of Kähler potentials, Invent. Math. 166 (2006), 125-149 Zbl1120.32026MR2242635
  20. Stephen Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), 495-550 Zbl0790.32017MR1165352
  21. Stephen Semmes, The homogeneous complex Monge-Ampère equation and the infinite-dimensional versions of classic symmetric spaces, The Gelfand Mathematical Seminars, 1993–1995 (1996), 225-242, Birkhäuser Boston, Boston, MA Zbl0860.35031MR1398924
  22. Bernard Shiffman, Tatsuya Tate, Steve Zelditch, Harmonic analysis on toric varieties, Explorations in complex and Riemannian geometry 332 (2003), 267-286, Amer. Math. Soc., Providence, RI Zbl1041.32004MR2018345
  23. Bernard Shiffman, Tatsuya Tate, Steve Zelditch, Distribution laws for integrable eigenfunctions, Ann. Inst. Fourier (Grenoble) 54 (2004), 1497-1546 Zbl1081.35063MR2127856
  24. Jian Song, The α -invariant on toric Fano manifolds, Amer. J. Math. 127 (2005), 1247-1259 Zbl1088.32012MR2183524
  25. Jian Song, S. Zelditch, Bergman metrics and geodesics in the space of Kähler metrics on toric varieties Zbl1282.35428
  26. Gang Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), 99-130 Zbl0706.53036MR1064867
  27. Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), 339-411 Zbl0369.53059MR480350
  28. Shing-Tung Yau, Open problems in geometry, Chern—a great geometer of the twentieth century (1992), 275-319, Int. Press, Hong Kong Zbl0826.01010MR1201338
  29. Steve Zelditch, Bernstein polynomials, Bergman kernels and toric Kähler varieties Zbl1178.32019
  30. Steve Zelditch, Szegő kernels and a theorem of Tian, Internat. Math. Res. Notices (1998), 317-331 Zbl0922.58082MR1616718

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.