Infinite geodesic rays in the space of Kähler potentials

Claudio Arezzo; Gang Tian

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)

  • Volume: 2, Issue: 4, page 617-630
  • ISSN: 0391-173X

Abstract

top
In this paper we prove the existence of solutions of a degenerate complex Monge-Ampére equation on a complex manifold. Applying our existence result to a special degeneration of complex structure, we show how to associate to a change of complex structure an infinite length geodetic ray in the space of potentials. We also prove an existence result for the initial value problem for geodesics. We end this paper with a discussion of a list of open problems indicating how to relate our reults to the existence problem for extremal metrics.

How to cite

top

Arezzo, Claudio, and Tian, Gang. "Infinite geodesic rays in the space of Kähler potentials." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.4 (2003): 617-630. <http://eudml.org/doc/84514>.

@article{Arezzo2003,
abstract = {In this paper we prove the existence of solutions of a degenerate complex Monge-Ampére equation on a complex manifold. Applying our existence result to a special degeneration of complex structure, we show how to associate to a change of complex structure an infinite length geodetic ray in the space of potentials. We also prove an existence result for the initial value problem for geodesics. We end this paper with a discussion of a list of open problems indicating how to relate our reults to the existence problem for extremal metrics.},
author = {Arezzo, Claudio, Tian, Gang},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {617-630},
publisher = {Scuola normale superiore},
title = {Infinite geodesic rays in the space of Kähler potentials},
url = {http://eudml.org/doc/84514},
volume = {2},
year = {2003},
}

TY - JOUR
AU - Arezzo, Claudio
AU - Tian, Gang
TI - Infinite geodesic rays in the space of Kähler potentials
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 4
SP - 617
EP - 630
AB - In this paper we prove the existence of solutions of a degenerate complex Monge-Ampére equation on a complex manifold. Applying our existence result to a special degeneration of complex structure, we show how to associate to a change of complex structure an infinite length geodetic ray in the space of potentials. We also prove an existence result for the initial value problem for geodesics. We end this paper with a discussion of a list of open problems indicating how to relate our reults to the existence problem for extremal metrics.
LA - eng
UR - http://eudml.org/doc/84514
ER -

References

top
  1. [1] D. Burns, Curvatures of Monge-Ampère foliations and parabolic manifolds, Ann. of Math. (2) 115 (1982), 349-373. Zbl0507.32011MR647810
  2. [2] E. Calabi, Extremal Kähler metrics, In: “Seminar on Differential Geometry”, Ann. Math. Stud. 102 (1982), 259-290. Zbl0487.53057MR645743
  3. [3] E. Calabi, Extremal Kähler metrics, II, In: “Differential Geometry and Complex analysis”, Lecture Notes in Math., Springer, 1985, 96-114. Zbl0574.58006MR780039
  4. [4] E. Calabi – X. Chen , The space of Kähler metrics II, J. Differential Geom. 61 (2002), 173-193. Zbl1067.58010MR1969662
  5. [5] X. Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), 189-234. Zbl1041.58003MR1863016
  6. [6] X. Chen, On the lower bound of the Mabuchi energy and its application, Internat. Math. Res. Notices 12 (2000), 607-623. Zbl0980.58007MR1772078
  7. [7] X. Chen, Recent progress in Kähler Geometry, In: “Proc. of the Internat Congress of Mathematicians 2002”, Vol. II, 273-282. Zbl1040.53083MR1957039
  8. [8] S. Y. Cheng – S. T. Yau, Inequality between Chern numbers of singular Kähler surfaces and characterization of orbit space of discrete group of S U ( 2 , 1 ) , Contemp. Math. 49 (1986), 31-43. Zbl0597.53052MR833802
  9. [9] W. Ding – G. TianG, Kähler-Einstein metrics and the generalized Futaki invariant, Invent. Math. 110 (1992), 315-335. Zbl0779.53044MR1185586
  10. [10] S. K. Donaldson, Remarks on gauge theory, complex geometry, and 4 -manifold topology, In: “The Fields Medal volume”, World Scientific, 1997. MR1622931
  11. [11] S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, In: “Northern California Symplectic Geometry Seminar”, 13-33, Amer. Math. Soc. Transl. (2) 196 Amer. Math. Soc., Providence, RI, 1999. Zbl0972.53025MR1736211
  12. [12] S. K. Donaldson, Scalar curvature and projective embeddings I, J. Differential Geom. 59 (2001), 479-522. Zbl1052.32017MR1916953
  13. [13] S. K. Donaldson, Holomorphic disks and the complex Monge-Ampere equation, to appear in J. Symplectic Geometry. Zbl1035.53102MR1959581
  14. [14] D. Guan, On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles, Math. Res. Lett. 6 (1999), 547-555. Zbl0968.53050MR1739213
  15. [15] V. Guillemin – M. Stenzel, Grauert tubes and the homogeneous Monge-Ampère equation, J. Differential Geom. 34 (1991), 561-570. Zbl0746.32005MR1131444
  16. [16] C. LeBrun, Polarized 4 -manifolds, extremal Kähler metrics, and Seiberg-Witten theory, Math. Res. Lett. 5 (1995), 653-662. Zbl0874.53051MR1359969
  17. [17] Z. Lu, On the lower terms of the asymptotic expansion of Tian-Yau-Zelditch, Amer. J. Math. 122 (2000), 235-273. Zbl0972.53042MR1749048
  18. [18] T. Mabuchi, K -energy maps integrating Futaki invariants, Tohoku Math. J. (1986), 575-593. Zbl0619.53040MR867064
  19. [19] T. MabuchiT, Some symplectic geometry on compact Kähler manifolds, Osaka J. Math. 24 (1987), 227-252. Zbl0645.53038MR909015
  20. [20] S. Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), 495-550. Zbl0790.32017MR1165352
  21. [21] G. Tian, On Kähler - Einstein metrics on certain Kähler manifolds with C ( M ) g t ; 0 , Invent. Math. 89 (1987), 225-246. Zbl0599.53046MR894378
  22. [22] G. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), 99-130. Zbl0706.53036MR1064867
  23. [23] G. Tian, On Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 1-37. Zbl0892.53027MR1471884
  24. [24] G. Tian – S. T. Yau, Complete Kähler manifolds with zero Ricci curvature, Invent. Math. 106 (1991), 27-60. Zbl0766.53053MR1123371
  25. [25] S. Zeldtich, Szegö Kernel and a Theorem of Tian, Internat. Math. Res. Notices 6 (1998), 317-331. Zbl0922.58082MR1616718

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.