Infinite geodesic rays in the space of Kähler potentials
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)
- Volume: 2, Issue: 4, page 617-630
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. Burns, Curvatures of Monge-Ampère foliations and parabolic manifolds, Ann. of Math. (2) 115 (1982), 349-373. Zbl0507.32011MR647810
- [2] E. Calabi, Extremal Kähler metrics, In: “Seminar on Differential Geometry”, Ann. Math. Stud. 102 (1982), 259-290. Zbl0487.53057MR645743
- [3] E. Calabi, Extremal Kähler metrics, II, In: “Differential Geometry and Complex analysis”, Lecture Notes in Math., Springer, 1985, 96-114. Zbl0574.58006MR780039
- [4] E. Calabi – X. Chen , The space of Kähler metrics II, J. Differential Geom. 61 (2002), 173-193. Zbl1067.58010MR1969662
- [5] X. Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), 189-234. Zbl1041.58003MR1863016
- [6] X. Chen, On the lower bound of the Mabuchi energy and its application, Internat. Math. Res. Notices 12 (2000), 607-623. Zbl0980.58007MR1772078
- [7] X. Chen, Recent progress in Kähler Geometry, In: “Proc. of the Internat Congress of Mathematicians 2002”, Vol. II, 273-282. Zbl1040.53083MR1957039
- [8] S. Y. Cheng – S. T. Yau, Inequality between Chern numbers of singular Kähler surfaces and characterization of orbit space of discrete group of , Contemp. Math. 49 (1986), 31-43. Zbl0597.53052MR833802
- [9] W. Ding – G. TianG, Kähler-Einstein metrics and the generalized Futaki invariant, Invent. Math. 110 (1992), 315-335. Zbl0779.53044MR1185586
- [10] S. K. Donaldson, Remarks on gauge theory, complex geometry, and -manifold topology, In: “The Fields Medal volume”, World Scientific, 1997. MR1622931
- [11] S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, In: “Northern California Symplectic Geometry Seminar”, 13-33, Amer. Math. Soc. Transl. (2) 196 Amer. Math. Soc., Providence, RI, 1999. Zbl0972.53025MR1736211
- [12] S. K. Donaldson, Scalar curvature and projective embeddings I, J. Differential Geom. 59 (2001), 479-522. Zbl1052.32017MR1916953
- [13] S. K. Donaldson, Holomorphic disks and the complex Monge-Ampere equation, to appear in J. Symplectic Geometry. Zbl1035.53102MR1959581
- [14] D. Guan, On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles, Math. Res. Lett. 6 (1999), 547-555. Zbl0968.53050MR1739213
- [15] V. Guillemin – M. Stenzel, Grauert tubes and the homogeneous Monge-Ampère equation, J. Differential Geom. 34 (1991), 561-570. Zbl0746.32005MR1131444
- [16] C. LeBrun, Polarized -manifolds, extremal Kähler metrics, and Seiberg-Witten theory, Math. Res. Lett. 5 (1995), 653-662. Zbl0874.53051MR1359969
- [17] Z. Lu, On the lower terms of the asymptotic expansion of Tian-Yau-Zelditch, Amer. J. Math. 122 (2000), 235-273. Zbl0972.53042MR1749048
- [18] T. Mabuchi, -energy maps integrating Futaki invariants, Tohoku Math. J. (1986), 575-593. Zbl0619.53040MR867064
- [19] T. MabuchiT, Some symplectic geometry on compact Kähler manifolds, Osaka J. Math. 24 (1987), 227-252. Zbl0645.53038MR909015
- [20] S. Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), 495-550. Zbl0790.32017MR1165352
- [21] G. Tian, On Kähler - Einstein metrics on certain Kähler manifolds with , Invent. Math. 89 (1987), 225-246. Zbl0599.53046MR894378
- [22] G. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), 99-130. Zbl0706.53036MR1064867
- [23] G. Tian, On Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 1-37. Zbl0892.53027MR1471884
- [24] G. Tian – S. T. Yau, Complete Kähler manifolds with zero Ricci curvature, Invent. Math. 106 (1991), 27-60. Zbl0766.53053MR1123371
- [25] S. Zeldtich, Szegö Kernel and a Theorem of Tian, Internat. Math. Res. Notices 6 (1998), 317-331. Zbl0922.58082MR1616718