Distribution laws for integrable eigenfunctions
Bernard Shiffman[1]; Tatsuya Tate; Steve Zelditch
- [1] Johns Hopkins University, Department of Mathematics, Baltimore, MD 21218 (USA), Department of Mathematics, Keio University, Keio University 3-14-1 Hiyoshi Kohoku-ku, Yokohama, 223-8522 (Japon)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 5, page 1497-1546
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topShiffman, Bernard, Tate, Tatsuya, and Zelditch, Steve. "Distribution laws for integrable eigenfunctions." Annales de l’institut Fourier 54.5 (2004): 1497-1546. <http://eudml.org/doc/116150>.
@article{Shiffman2004,
abstract = {We determine the asymptotics of the joint eigenfunctions of the torus action on a toric
Kähler variety. Such varieties are models of completely integrable systems in complex
geometry. We first determine the pointwise asymptotics of the eigenfunctions, which show
that they behave like Gaussians centered at the corresponding classical torus. We then
show that there is a universal Gaussian scaling limit of the distribution function near
its center. We also determine the limit distribution for the tails of the eigenfunctions
on large length scales. These are not universal but depend on the global geometry of the
toric variety and in particular on the details of the exponential decay of the
eigenfunctions away from the classically allowed set.},
affiliation = {Johns Hopkins University, Department of Mathematics, Baltimore, MD 21218 (USA), Department of Mathematics, Keio University, Keio University 3-14-1 Hiyoshi Kohoku-ku, Yokohama, 223-8522 (Japon)},
author = {Shiffman, Bernard, Tate, Tatsuya, Zelditch, Steve},
journal = {Annales de l’institut Fourier},
keywords = {toric Kähler variety; joint eigenfunction of the torus action; distribution law of the eigenfunction; semi-classical scaling limit; moments; line bundle; disordered system; pointwise asymptotics; Hecke eigenfunctions; phase space; configuration space},
language = {eng},
number = {5},
pages = {1497-1546},
publisher = {Association des Annales de l'Institut Fourier},
title = {Distribution laws for integrable eigenfunctions},
url = {http://eudml.org/doc/116150},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Shiffman, Bernard
AU - Tate, Tatsuya
AU - Zelditch, Steve
TI - Distribution laws for integrable eigenfunctions
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 5
SP - 1497
EP - 1546
AB - We determine the asymptotics of the joint eigenfunctions of the torus action on a toric
Kähler variety. Such varieties are models of completely integrable systems in complex
geometry. We first determine the pointwise asymptotics of the eigenfunctions, which show
that they behave like Gaussians centered at the corresponding classical torus. We then
show that there is a universal Gaussian scaling limit of the distribution function near
its center. We also determine the limit distribution for the tails of the eigenfunctions
on large length scales. These are not universal but depend on the global geometry of the
toric variety and in particular on the details of the exponential decay of the
eigenfunctions away from the classically allowed set.
LA - eng
KW - toric Kähler variety; joint eigenfunction of the torus action; distribution law of the eigenfunction; semi-classical scaling limit; moments; line bundle; disordered system; pointwise asymptotics; Hecke eigenfunctions; phase space; configuration space
UR - http://eudml.org/doc/116150
ER -
References
top- M.V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A 10 (1977), 2083-2091 Zbl0377.70014MR489542
- M.V. Berry, J. H. Hannay, A.M. Ozorio, de Almeida, Intensity moments of semiclassical wavefunctions, J. Phys. D 8 (1983), 229-242 MR724590
- T. Delzant, Hamiltoniens périodiques et image convexe de l'application moment, Bull. Soc. Math. France 116 (1988), 315-339 Zbl0676.58029MR984900
- V. I. Falcko, K. B. Efetov, Statistics of wave functions in mesoscopic systems, J. Math. Phys 37 (1996), 4935-4967 Zbl0894.35092MR1411615
- W. Fulton, Introduction to Toric Varieties, 131 (1993), Princeton Univ. Press, Princeton Zbl0813.14039MR1234037
- I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, (1994), Birkhäuser, Boston Zbl0827.14036MR1264417
- V. Guillemin, Moment Maps and Combinatorial Invariants of Hamiltonian -Spaces, 122 (1994), Birkhäuser, Boston Zbl0828.58001MR1301331
- D. A. Hejhal, On eigenfunctions of the Laplacian for Hecke triangle groups, Emerging applications of number theory (Minneapolis, MN, 1996) Vol. 109 (1999), 291-315, Springer-Verlag, New York Zbl0982.11029
- D. A. Hejhal, B. N. Rackner, On the topography of Maass waveforms for , Experiment. Math 1 (1992), 275-305 Zbl0813.11035MR1257286
- L. Hörmander, The Analysis of Linear Partial Differential Operators, I, (1990), Springer-Verlag, New York Zbl0712.35001
- N. M. Katz, Sato-Tate equidistribution of Kurlberg-Rudnick sums, Internat. Math. Res. Notices (2001), 711-728 Zbl1011.11058MR1846353
- P. Kurlberg, Z. Rudnick, Value distribution for eigenfunctions of desymmetrized quantum maps, Internat. Math. Res. Notices (2001), 985-1002 Zbl1001.81025MR1860122
- E. Lerman, N. Shirokova, Completely integrable torus actions on symplectic cones, Math. Res. Lett 9 (2002), 105-115 Zbl1001.37046MR1892317
- A. D. Mirlin, Statistics of energy levels and eigenfunctions in disordered systems, Phys. Rep 326 (2000), 259-382 Zbl1013.81015MR1745139
- A. D. Mirlin, Y. V. Fyodorov, Distribution of local densities of states, order parameter function, and critical behavior near the Anderson transition, Phys. Rev. Lett. 72 (1994), 526-529
- V. N. Prigodin, B. L. Altshuler, Long-range spatial correlations of eigenfunctions in quantum disordered systems, Phys. Rev. Lett 80 (1998), 1944-1947
- B. Shiffman, T. Tate, S. Zelditch, Harmonic analysis on toric varieties, Explorations in Complex and Riemannian Geometry 332, 267-286, Amer. Math. Soc., Providence, RI Zbl1041.32004
- B. Shiffman, S. Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys 200 (1999), 661-683 Zbl0919.32020MR1675133
- B. Shiffman, S. Zelditch, Random polynomials with prescribed Newton polytope, J. Amer. Math. Soc 17 (2004), 49-108 Zbl1119.60007MR2015330
- M. Srednicki, F. Stiernelof, Gaussian fluctuations in chaotic eigenstates, J. Phys. A 29 (1996), 5817-5826 Zbl0905.58031MR1419197
- J. Toth, S. Zelditch, -norms of eigenfunctions in the completely integrable case, Ann. Henri Poincaré 4 (2003), 343-368 Zbl1028.58028MR1985776
- S.-T. Yau, Open problems in geometry, Differential Geometry. Part 1: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990) 54 (1993), 1-28, Amer. Math. Soc., Providence, RI Zbl0801.53001
- S. Zelditch, Szegö kernels and a theorem of Tian, Internat. Math. Res. Notices (1998), 317-331 Zbl0922.58082MR1616718
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.