Distribution laws for integrable eigenfunctions
Bernard Shiffman[1]; Tatsuya Tate; Steve Zelditch
- [1] Johns Hopkins University, Department of Mathematics, Baltimore, MD 21218 (USA), Department of Mathematics, Keio University, Keio University 3-14-1 Hiyoshi Kohoku-ku, Yokohama, 223-8522 (Japon)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 5, page 1497-1546
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- M.V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A 10 (1977), 2083-2091 Zbl0377.70014MR489542
- M.V. Berry, J. H. Hannay, A.M. Ozorio, de Almeida, Intensity moments of semiclassical wavefunctions, J. Phys. D 8 (1983), 229-242 MR724590
- T. Delzant, Hamiltoniens périodiques et image convexe de l'application moment, Bull. Soc. Math. France 116 (1988), 315-339 Zbl0676.58029MR984900
- V. I. Falcko, K. B. Efetov, Statistics of wave functions in mesoscopic systems, J. Math. Phys 37 (1996), 4935-4967 Zbl0894.35092MR1411615
- W. Fulton, Introduction to Toric Varieties, 131 (1993), Princeton Univ. Press, Princeton Zbl0813.14039MR1234037
- I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, (1994), Birkhäuser, Boston Zbl0827.14036MR1264417
- V. Guillemin, Moment Maps and Combinatorial Invariants of Hamiltonian -Spaces, 122 (1994), Birkhäuser, Boston Zbl0828.58001MR1301331
- D. A. Hejhal, On eigenfunctions of the Laplacian for Hecke triangle groups, Emerging applications of number theory (Minneapolis, MN, 1996) Vol. 109 (1999), 291-315, Springer-Verlag, New York Zbl0982.11029
- D. A. Hejhal, B. N. Rackner, On the topography of Maass waveforms for , Experiment. Math 1 (1992), 275-305 Zbl0813.11035MR1257286
- L. Hörmander, The Analysis of Linear Partial Differential Operators, I, (1990), Springer-Verlag, New York Zbl0712.35001
- N. M. Katz, Sato-Tate equidistribution of Kurlberg-Rudnick sums, Internat. Math. Res. Notices (2001), 711-728 Zbl1011.11058MR1846353
- P. Kurlberg, Z. Rudnick, Value distribution for eigenfunctions of desymmetrized quantum maps, Internat. Math. Res. Notices (2001), 985-1002 Zbl1001.81025MR1860122
- E. Lerman, N. Shirokova, Completely integrable torus actions on symplectic cones, Math. Res. Lett 9 (2002), 105-115 Zbl1001.37046MR1892317
- A. D. Mirlin, Statistics of energy levels and eigenfunctions in disordered systems, Phys. Rep 326 (2000), 259-382 Zbl1013.81015MR1745139
- A. D. Mirlin, Y. V. Fyodorov, Distribution of local densities of states, order parameter function, and critical behavior near the Anderson transition, Phys. Rev. Lett. 72 (1994), 526-529
- V. N. Prigodin, B. L. Altshuler, Long-range spatial correlations of eigenfunctions in quantum disordered systems, Phys. Rev. Lett 80 (1998), 1944-1947
- B. Shiffman, T. Tate, S. Zelditch, Harmonic analysis on toric varieties, Explorations in Complex and Riemannian Geometry 332, 267-286, Amer. Math. Soc., Providence, RI Zbl1041.32004
- B. Shiffman, S. Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys 200 (1999), 661-683 Zbl0919.32020MR1675133
- B. Shiffman, S. Zelditch, Random polynomials with prescribed Newton polytope, J. Amer. Math. Soc 17 (2004), 49-108 Zbl1119.60007MR2015330
- M. Srednicki, F. Stiernelof, Gaussian fluctuations in chaotic eigenstates, J. Phys. A 29 (1996), 5817-5826 Zbl0905.58031MR1419197
- J. Toth, S. Zelditch, -norms of eigenfunctions in the completely integrable case, Ann. Henri Poincaré 4 (2003), 343-368 Zbl1028.58028MR1985776
- S.-T. Yau, Open problems in geometry, Differential Geometry. Part 1: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990) 54 (1993), 1-28, Amer. Math. Soc., Providence, RI Zbl0801.53001
- S. Zelditch, Szegö kernels and a theorem of Tian, Internat. Math. Res. Notices (1998), 317-331 Zbl0922.58082MR1616718