Riesz transforms on connected sums
- [1] Université de Nantes Laboratoire de Mathématiques Jean Leray (UMR 6629) 2, rue de la Houssinière B.P. 92208 44322 Nantes Cedex 3 (France)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 7, page 2329-2343
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCarron, Gilles. "Riesz transforms on connected sums." Annales de l’institut Fourier 57.7 (2007): 2329-2343. <http://eudml.org/doc/10298>.
@article{Carron2007,
abstract = {Assume that $M_0$ is a complete Riemannian manifold with Ricci curvature bounded from below and that $M_0$ satisfies a Sobolev inequality of dimension $\nu >3$. Let $M$ be a complete Riemannian manifold isometric at infinity to $M_0$ and let $p\in (\nu /(\nu -1), \nu )$. The boundedness of the Riesz transform of $L^p(M_0)$ then implies the boundedness of the Riesz transform of $L^p(M)$},
affiliation = {Université de Nantes Laboratoire de Mathématiques Jean Leray (UMR 6629) 2, rue de la Houssinière B.P. 92208 44322 Nantes Cedex 3 (France)},
author = {Carron, Gilles},
journal = {Annales de l’institut Fourier},
keywords = {Riesz transform; Sobolev inequalities; Riemannian manifold},
language = {eng},
number = {7},
pages = {2329-2343},
publisher = {Association des Annales de l’institut Fourier},
title = {Riesz transforms on connected sums},
url = {http://eudml.org/doc/10298},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Carron, Gilles
TI - Riesz transforms on connected sums
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2329
EP - 2343
AB - Assume that $M_0$ is a complete Riemannian manifold with Ricci curvature bounded from below and that $M_0$ satisfies a Sobolev inequality of dimension $\nu >3$. Let $M$ be a complete Riemannian manifold isometric at infinity to $M_0$ and let $p\in (\nu /(\nu -1), \nu )$. The boundedness of the Riesz transform of $L^p(M_0)$ then implies the boundedness of the Riesz transform of $L^p(M)$
LA - eng
KW - Riesz transform; Sobolev inequalities; Riemannian manifold
UR - http://eudml.org/doc/10298
ER -
References
top- G. Alexopoulos, An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth, Canad. J. Math. 44 (1992), 691-727 Zbl0792.22005MR1178564
- J.-Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J. 65 (1992), 257-297 Zbl0764.43005MR1150587
- D. Bakry, Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, Lecture Notes in Math. 1247 (1987), 137-172 Zbl0629.58018MR941980
- G. Carron, Une suite exacte en -cohomologie, Duke Math. J. 95 (1998), 343-372 Zbl0951.58024MR1652017
- G. Carron, Th. Coulhon, A. Hassell, Riesz transform for manifolds with Euclidean ends Zbl1106.58021
- Th. Coulhon, N. Dungey, Riesz transform and perturbation, (2006) Zbl1122.58014MR2320162
- Th. Coulhon, X. T. Duong, Riesz transforms for , Trans. Amer. Math. Soc. 351 (1999), 1151-1169 Zbl0973.58018MR1458299
- Th. Coulhon, X. T. Duong, Riesz transform and related inequalities on non-compact Riemannian manifolds, Comm. in Pure and Appl. Math. 56 (2003), 1728-1751 Zbl1037.58017MR2001444
- Th. Coulhon, L. Saloff-Coste, N. Th. Varopoulos, Analysis and geometry on groups, Cambridge Tracts in Mathematics 100 (1992), Cambridge University Press, Cambridge Zbl0744.43006MR1218884
- E. B. Davies, Pointwise bounds on the space and time derivatives of heat kernels, Operator Theory 21 (1989), 367-378 Zbl0702.35106MR1023321
- A. Grigor’yan, Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana 10 (1994), 395-452 Zbl0810.58040
- A. Grigor’yan, L. Saloff-Coste, Heat kernel on connected sums of Riemannian manifolds, Math. Res. Lett. 6 (1999), 307-321 Zbl0957.58023
- A. Grigor’yan, L. Saloff-Coste, Stability results for Harnack inequalities, Ann. Inst. Fourier 55 (2005), 825-890 Zbl1115.58024
- E. Hebey, Optimal Sobolev inequalities on complete Riemannian manifolds with Ricci curvature bounded below and positive injectivity radius, Amer. J. Math. 118 (1996), 291-300 Zbl0863.53031MR1385278
- H. Komatsu, Fractional powers of operators, Pacific J. Math. 19 (1966), 285-346 Zbl0154.16104MR201985
- H.-Q. Li, La transformation de Riesz sur les variétés coniques, J. Funct. Anal. 168 (1999), 145-238 Zbl0937.43004MR1717835
- N. Lohoué, Comparaison des champs de vecteurs et des puissances du laplacien sur une variété riemannienne à courbure non positive, J. Funct. Anal. 61 (1985), 164-201 Zbl0605.58051MR786621
- N. Th. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal. 63 (1985), 240-260 Zbl0608.47047MR803094
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.