Riesz transforms on connected sums

Gilles Carron[1]

  • [1] Université de Nantes Laboratoire de Mathématiques Jean Leray (UMR 6629) 2, rue de la Houssinière B.P. 92208 44322 Nantes Cedex 3 (France)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 7, page 2329-2343
  • ISSN: 0373-0956

Abstract

top
Assume that M 0 is a complete Riemannian manifold with Ricci curvature bounded from below and that M 0 satisfies a Sobolev inequality of dimension ν > 3 . Let M be a complete Riemannian manifold isometric at infinity to M 0 and let p ( ν / ( ν - 1 ) , ν ) . The boundedness of the Riesz transform of L p ( M 0 ) then implies the boundedness of the Riesz transform of L p ( M )

How to cite

top

Carron, Gilles. "Riesz transforms on connected sums." Annales de l’institut Fourier 57.7 (2007): 2329-2343. <http://eudml.org/doc/10298>.

@article{Carron2007,
abstract = {Assume that $M_0$ is a complete Riemannian manifold with Ricci curvature bounded from below and that $M_0$ satisfies a Sobolev inequality of dimension $\nu &gt;3$. Let $M$ be a complete Riemannian manifold isometric at infinity to $M_0$ and let $p\in (\nu /(\nu -1), \nu )$. The boundedness of the Riesz transform of $L^p(M_0)$ then implies the boundedness of the Riesz transform of $L^p(M)$},
affiliation = {Université de Nantes Laboratoire de Mathématiques Jean Leray (UMR 6629) 2, rue de la Houssinière B.P. 92208 44322 Nantes Cedex 3 (France)},
author = {Carron, Gilles},
journal = {Annales de l’institut Fourier},
keywords = {Riesz transform; Sobolev inequalities; Riemannian manifold},
language = {eng},
number = {7},
pages = {2329-2343},
publisher = {Association des Annales de l’institut Fourier},
title = {Riesz transforms on connected sums},
url = {http://eudml.org/doc/10298},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Carron, Gilles
TI - Riesz transforms on connected sums
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2329
EP - 2343
AB - Assume that $M_0$ is a complete Riemannian manifold with Ricci curvature bounded from below and that $M_0$ satisfies a Sobolev inequality of dimension $\nu &gt;3$. Let $M$ be a complete Riemannian manifold isometric at infinity to $M_0$ and let $p\in (\nu /(\nu -1), \nu )$. The boundedness of the Riesz transform of $L^p(M_0)$ then implies the boundedness of the Riesz transform of $L^p(M)$
LA - eng
KW - Riesz transform; Sobolev inequalities; Riemannian manifold
UR - http://eudml.org/doc/10298
ER -

References

top
  1. G. Alexopoulos, An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth, Canad. J. Math. 44 (1992), 691-727 Zbl0792.22005MR1178564
  2. J.-Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J. 65 (1992), 257-297 Zbl0764.43005MR1150587
  3. D. Bakry, Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, Lecture Notes in Math. 1247 (1987), 137-172 Zbl0629.58018MR941980
  4. G. Carron, Une suite exacte en L 2 -cohomologie, Duke Math. J. 95 (1998), 343-372 Zbl0951.58024MR1652017
  5. G. Carron, Th. Coulhon, A. Hassell, Riesz transform for manifolds with Euclidean ends Zbl1106.58021
  6. Th. Coulhon, N. Dungey, Riesz transform and perturbation, (2006) Zbl1122.58014MR2320162
  7. Th. Coulhon, X. T. Duong, Riesz transforms for 1 p 2 , Trans. Amer. Math. Soc. 351 (1999), 1151-1169 Zbl0973.58018MR1458299
  8. Th. Coulhon, X. T. Duong, Riesz transform and related inequalities on non-compact Riemannian manifolds, Comm. in Pure and Appl. Math. 56 (2003), 1728-1751 Zbl1037.58017MR2001444
  9. Th. Coulhon, L. Saloff-Coste, N. Th. Varopoulos, Analysis and geometry on groups, Cambridge Tracts in Mathematics 100 (1992), Cambridge University Press, Cambridge Zbl0744.43006MR1218884
  10. E. B. Davies, Pointwise bounds on the space and time derivatives of heat kernels, Operator Theory 21 (1989), 367-378 Zbl0702.35106MR1023321
  11. A. Grigor’yan, Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana 10 (1994), 395-452 Zbl0810.58040
  12. A. Grigor’yan, L. Saloff-Coste, Heat kernel on connected sums of Riemannian manifolds, Math. Res. Lett. 6 (1999), 307-321 Zbl0957.58023
  13. A. Grigor’yan, L. Saloff-Coste, Stability results for Harnack inequalities, Ann. Inst. Fourier 55 (2005), 825-890 Zbl1115.58024
  14. E. Hebey, Optimal Sobolev inequalities on complete Riemannian manifolds with Ricci curvature bounded below and positive injectivity radius, Amer. J. Math. 118 (1996), 291-300 Zbl0863.53031MR1385278
  15. H. Komatsu, Fractional powers of operators, Pacific J. Math. 19 (1966), 285-346 Zbl0154.16104MR201985
  16. H.-Q. Li, La transformation de Riesz sur les variétés coniques, J. Funct. Anal. 168 (1999), 145-238 Zbl0937.43004MR1717835
  17. N. Lohoué, Comparaison des champs de vecteurs et des puissances du laplacien sur une variété riemannienne à courbure non positive, J. Funct. Anal. 61 (1985), 164-201 Zbl0605.58051MR786621
  18. N. Th. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal. 63 (1985), 240-260 Zbl0608.47047MR803094

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.