Stability results for Harnack inequalities

Alexander Grigor'yan[1]; Laurent Saloff-Coste

  • [1] Imperial college, department of mathematics, London SW7 2BZ (United kingdom), Cornell University, department of mathematics, Malott Hall, Ithaca NY 14853-4201 (USA)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 3, page 825-890
  • ISSN: 0373-0956

Abstract

top
We develop new techniques for proving uniform elliptic and parabolic Harnack inequalities on weighted Riemannian manifolds. In particular, we prove the stability of the Harnack inequalities under certain non-uniform changes of the weight. We also prove necessary and sufficient conditions for the Harnack inequalities to hold on complete non-compact manifolds having non-negative Ricci curvature outside a compact set and a finite first Betti number or just having asymptotically non-negative sectional curvature.

How to cite

top

Grigor'yan, Alexander, and Saloff-Coste, Laurent. "Stability results for Harnack inequalities." Annales de l’institut Fourier 55.3 (2005): 825-890. <http://eudml.org/doc/116210>.

@article{Grigoryan2005,
abstract = {We develop new techniques for proving uniform elliptic and parabolic Harnack inequalities on weighted Riemannian manifolds. In particular, we prove the stability of the Harnack inequalities under certain non-uniform changes of the weight. We also prove necessary and sufficient conditions for the Harnack inequalities to hold on complete non-compact manifolds having non-negative Ricci curvature outside a compact set and a finite first Betti number or just having asymptotically non-negative sectional curvature.},
affiliation = {Imperial college, department of mathematics, London SW7 2BZ (United kingdom), Cornell University, department of mathematics, Malott Hall, Ithaca NY 14853-4201 (USA)},
author = {Grigor'yan, Alexander, Saloff-Coste, Laurent},
journal = {Annales de l’institut Fourier},
keywords = {Harnack inequality; Riemannian manifold; heat equation},
language = {eng},
number = {3},
pages = {825-890},
publisher = {Association des Annales de l'Institut Fourier},
title = {Stability results for Harnack inequalities},
url = {http://eudml.org/doc/116210},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Grigor'yan, Alexander
AU - Saloff-Coste, Laurent
TI - Stability results for Harnack inequalities
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 3
SP - 825
EP - 890
AB - We develop new techniques for proving uniform elliptic and parabolic Harnack inequalities on weighted Riemannian manifolds. In particular, we prove the stability of the Harnack inequalities under certain non-uniform changes of the weight. We also prove necessary and sufficient conditions for the Harnack inequalities to hold on complete non-compact manifolds having non-negative Ricci curvature outside a compact set and a finite first Betti number or just having asymptotically non-negative sectional curvature.
LA - eng
KW - Harnack inequality; Riemannian manifold; heat equation
UR - http://eudml.org/doc/116210
ER -

References

top
  1. D.G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc. 73 (1967), 890-896 Zbl0153.42002MR217444
  2. M.T. Barlow, R.F. Bass, Brownian motion and harmonic analysis on Sierpinski carpets, Canad. J. Math. 54 (1999), 673-744 Zbl0945.60071MR1701339
  3. M.T. Barlow, R.F. Bass, Random walks on graphical Sierpinski carpets, Random walks and discrete potential theory (Cortona, Italy, 1997) 39 (1999), 26-55, Cambridge Univ. Press, Cambridge Zbl0958.60045
  4. P. Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. 15 (1982), 213-230 Zbl0501.53030MR683635
  5. M. Cai, Ends of Riemannian manifolds with nonnegative Ricci curvature outside a compact set, Bull. Amer. Math. Soc. 24 (1991), 371-377 Zbl0728.53026MR1071028
  6. I. Chavel, Eigenvalues in Riemannian geometry, (1984), Academic Press, New York Zbl0551.53001MR768584
  7. J. Cheeger, M. Gromov, M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom. 17 (1982), 15-53 Zbl0493.53035MR658471
  8. J. Cheeger, S.-T. Yau, A lower bound for the heat kernel, Comm. Pure Appl. Math. 34 (1981), 465-480 Zbl0481.35003MR615626
  9. S.Y. Cheng, S.-T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), 333-354 Zbl0312.53031MR385749
  10. F.R.K. Chung, Spectral Graph Theory, 92 (1996), Amer. Math. Soc. Publications Zbl0867.05046
  11. T. Coulhon, L. Saloff-Coste, Variétés riemanniennes isométriques à l'infini, Revista Matematica Iberoamericana 11 (1995), 687-726 Zbl0845.58054MR1363211
  12. T. Delmotte, Graphs between elliptic and parabolic Harnack inequalities, Potential Analysis 16 (2000), 151-168 Zbl1081.39012MR1881595
  13. P. Diaconis, L. Saloff-Coste, What do we know about the Metropolis Algorithm?, J. Computer and System Sciences 57 (1998), 20-36 Zbl0920.68054MR1649805
  14. J. Dodziuk, Maximum principle for parabolic inequalities and the heat flow on open manifolds, Indiana Univ. Math. J. 32 (1983), 703-716 Zbl0526.58047MR711862
  15. E.B. Fabes, D.W. Stroock, A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash, Arch. Rat. Mech. Anal. 96 (1986), 327-338 Zbl0652.35052MR855753
  16. R. Greene, W. Wu, Function theory of manifolds which possess a pole, 699 (1979), Springer Zbl0414.53043MR521983
  17. A. Grigor'yan, The heat equation on non-compact Riemannian manifolds (Russian), Mat. Sbornik 182 (1991), 55-87 Zbl0743.58031
  18. A. Grigor'yan, Heat kernel upper bounds on a complete non-compact manifold, Revista Matematica Iberoamericana 10 (1994), 395-452 Zbl0810.58040MR1286481
  19. A. Grigor'yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. 36 (1999), 135-249 Zbl0927.58019MR1659871
  20. A. Grigor'yan, L. Saloff-Coste, Surgery of Faber-Krahn inequalities and applications to heat kernel upper bounds on manifolds with ends, (2000) 
  21. A. Grigor'yan, L. Saloff-Coste, Dirichlet heat kernel in the exterior of a compact set, Comm. Pure Appl. Math. 55 (2002), 93-133 Zbl1037.58018MR1857881
  22. A. Grigor'yan, L. Saloff-Coste, Hitting probabilities for Brownian motion on Riemannian manifolds, J. Math. Pures et Appl. 81 (2002), 115-142 Zbl1042.58022MR1994606
  23. M. Gromov, Structures métriques pour les variétés Riemannienes, (1981), Cedic/Ferdnand Nathan, Paris Zbl0509.53034MR682063
  24. P. Hajlasz, P. Koskela, Sobolev Met Poincaré, 688 (2000), Memoirs of the AMS Zbl0954.46022MR1683160
  25. W. Hebisch, L. Saloff-Coste, On the relation between elliptic and parabolic Harnack inequalities, Ann. Inst. Fourier 51 (2001), 1437-1481 Zbl0988.58007MR1860672
  26. D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander condition, Duke Math. J. 53 (1986), 503-523 Zbl0614.35066MR850547
  27. M. Kanai, Analytic inequalities, and rough isometries between non-compact Riemannian manifolds, 1201 (1986), 122-137, Springer Zbl0593.53026
  28. A. Kasue, Harmonic functions with growth conditions on a manifold of asymptotically nonnegative curvature I., Geometry and Analysis on Manifolds (Katata/Kyoto, 1987) (1988), 158-181, Springer Zbl0685.31004
  29. J.L. Kazdan, F.W. Warner, Prescribing curvatures, Proceedings of Symposia in Pure Mathematics 27 (1975), 309-319 Zbl0313.53017MR394505
  30. S. Kusuoka, D. Stroock, Application of Malliavin calculus, III, J. Fac. Sci. Tokyo Univ., Sect. 1A, Math. 34 (1987), 391-442 Zbl0633.60078MR914028
  31. E.M. Landis, The second order equations of elliptic and parabolic type (Russian), (1971), Nauka, Moscow Zbl0226.35001
  32. P. Li, L.F. Tam, Positive harmonic functions on complete manifolds with non-negative curvature outside a compact set, Ann. Math. 125 (1987), 171-207 Zbl0622.58001MR873381
  33. P. Li, L.F. Tam, Green's function, harmonic functions and volume comparison, J. Diff. Geom. 41 (1995), 277-318 Zbl0827.53033
  34. P. Li, S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201 Zbl0611.58045MR834612
  35. Z.-D. Liu, Ball covering property and nonnegative Ricci curvature outside a compact set, Differential Geometry: Riemannian Geometry (Los Angeles, CA, 1990) 54, Part 3 (1993), Amer. Math. Soc., Providence, RI Zbl0788.53028
  36. A.G. Losev, Some Liouville theorems on Riemannian manifolds of a special type (Russian), Izv. Vyssh. Uchebn. Zaved. Matematika 12 (1991), 15-24 Zbl0764.58035MR1205018
  37. G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Revista Matematica Iberoamericana 8 (1992), 367-439 Zbl0804.35015MR1202416
  38. P. March, Brownian motion and harmonic functions on rotationally symmetric manifolds, Ann. Prob. 14 (1986), 793-801 Zbl0593.60078MR841584
  39. J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591 Zbl0111.09302MR159138
  40. J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101-134 Zbl0149.06902MR159139
  41. M. Murata, Positive harmonic functions on rotationary symmetric Riemannian manifolds, Potential Theory (1992), 251-259, Walter de Gruyter, Berlin Zbl0777.53039
  42. F.O. Porper, S.D. Eidel'man, Two-side estimates of fundamental solutions of second-order parabolic equations and some applications (Russian), Uspekhi Matem. Nauk 39 (1984), 101-156 Zbl0582.35052MR747792
  43. L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices 2 (1992), 27-38 Zbl0769.58054MR1150597
  44. L. Saloff-Coste, Parabolic Harnack inequality for divergence form second order differential operators, Potential Analysis 4 (1995), 429-467 Zbl0840.31006MR1354894
  45. L. Saloff-Coste, Lectures on finite Markov chains,, (1997), Springer Zbl0885.60061MR1490046
  46. L. Saloff-Coste, Aspects of Sobolev inequalities, 289 (2002), Cambridge Univ. Press Zbl0991.35002
  47. K.-Th. Sturm, Sharp estimates for capacities and applications to symmetrical diffusions, Probability theory and related fields 103 (1995), 73-89 Zbl0828.60062MR1347171
  48. C.-J. Sung, L.-F. Tam, J. Wang, Spaces of harmonic functions, J. London Math. Soc. 2 (2000), 789-806 Zbl0963.31004MR1766105
  49. S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228 Zbl0291.31002MR431040

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.