Stability results for Harnack inequalities
Alexander Grigor'yan[1]; Laurent Saloff-Coste
- [1] Imperial college, department of mathematics, London SW7 2BZ (United kingdom), Cornell University, department of mathematics, Malott Hall, Ithaca NY 14853-4201 (USA)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 3, page 825-890
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGrigor'yan, Alexander, and Saloff-Coste, Laurent. "Stability results for Harnack inequalities." Annales de l’institut Fourier 55.3 (2005): 825-890. <http://eudml.org/doc/116210>.
@article{Grigoryan2005,
abstract = {We develop new techniques for proving uniform elliptic and parabolic Harnack inequalities
on weighted Riemannian manifolds. In particular, we prove the stability of the Harnack
inequalities under certain non-uniform changes of the weight. We also prove necessary and
sufficient conditions for the Harnack inequalities to hold on complete non-compact
manifolds having non-negative Ricci curvature outside a compact set and a finite first
Betti number or just having asymptotically non-negative sectional curvature.},
affiliation = {Imperial college, department of mathematics, London SW7 2BZ (United kingdom), Cornell University, department of mathematics, Malott Hall, Ithaca NY 14853-4201 (USA)},
author = {Grigor'yan, Alexander, Saloff-Coste, Laurent},
journal = {Annales de l’institut Fourier},
keywords = {Harnack inequality; Riemannian manifold; heat equation},
language = {eng},
number = {3},
pages = {825-890},
publisher = {Association des Annales de l'Institut Fourier},
title = {Stability results for Harnack inequalities},
url = {http://eudml.org/doc/116210},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Grigor'yan, Alexander
AU - Saloff-Coste, Laurent
TI - Stability results for Harnack inequalities
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 3
SP - 825
EP - 890
AB - We develop new techniques for proving uniform elliptic and parabolic Harnack inequalities
on weighted Riemannian manifolds. In particular, we prove the stability of the Harnack
inequalities under certain non-uniform changes of the weight. We also prove necessary and
sufficient conditions for the Harnack inequalities to hold on complete non-compact
manifolds having non-negative Ricci curvature outside a compact set and a finite first
Betti number or just having asymptotically non-negative sectional curvature.
LA - eng
KW - Harnack inequality; Riemannian manifold; heat equation
UR - http://eudml.org/doc/116210
ER -
References
top- D.G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc. 73 (1967), 890-896 Zbl0153.42002MR217444
- M.T. Barlow, R.F. Bass, Brownian motion and harmonic analysis on Sierpinski carpets, Canad. J. Math. 54 (1999), 673-744 Zbl0945.60071MR1701339
- M.T. Barlow, R.F. Bass, Random walks on graphical Sierpinski carpets, Random walks and discrete potential theory (Cortona, Italy, 1997) 39 (1999), 26-55, Cambridge Univ. Press, Cambridge Zbl0958.60045
- P. Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. 15 (1982), 213-230 Zbl0501.53030MR683635
- M. Cai, Ends of Riemannian manifolds with nonnegative Ricci curvature outside a compact set, Bull. Amer. Math. Soc. 24 (1991), 371-377 Zbl0728.53026MR1071028
- I. Chavel, Eigenvalues in Riemannian geometry, (1984), Academic Press, New York Zbl0551.53001MR768584
- J. Cheeger, M. Gromov, M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom. 17 (1982), 15-53 Zbl0493.53035MR658471
- J. Cheeger, S.-T. Yau, A lower bound for the heat kernel, Comm. Pure Appl. Math. 34 (1981), 465-480 Zbl0481.35003MR615626
- S.Y. Cheng, S.-T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), 333-354 Zbl0312.53031MR385749
- F.R.K. Chung, Spectral Graph Theory, 92 (1996), Amer. Math. Soc. Publications Zbl0867.05046
- T. Coulhon, L. Saloff-Coste, Variétés riemanniennes isométriques à l'infini, Revista Matematica Iberoamericana 11 (1995), 687-726 Zbl0845.58054MR1363211
- T. Delmotte, Graphs between elliptic and parabolic Harnack inequalities, Potential Analysis 16 (2000), 151-168 Zbl1081.39012MR1881595
- P. Diaconis, L. Saloff-Coste, What do we know about the Metropolis Algorithm?, J. Computer and System Sciences 57 (1998), 20-36 Zbl0920.68054MR1649805
- J. Dodziuk, Maximum principle for parabolic inequalities and the heat flow on open manifolds, Indiana Univ. Math. J. 32 (1983), 703-716 Zbl0526.58047MR711862
- E.B. Fabes, D.W. Stroock, A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash, Arch. Rat. Mech. Anal. 96 (1986), 327-338 Zbl0652.35052MR855753
- R. Greene, W. Wu, Function theory of manifolds which possess a pole, 699 (1979), Springer Zbl0414.53043MR521983
- A. Grigor'yan, The heat equation on non-compact Riemannian manifolds (Russian), Mat. Sbornik 182 (1991), 55-87 Zbl0743.58031
- A. Grigor'yan, Heat kernel upper bounds on a complete non-compact manifold, Revista Matematica Iberoamericana 10 (1994), 395-452 Zbl0810.58040MR1286481
- A. Grigor'yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. 36 (1999), 135-249 Zbl0927.58019MR1659871
- A. Grigor'yan, L. Saloff-Coste, Surgery of Faber-Krahn inequalities and applications to heat kernel upper bounds on manifolds with ends, (2000)
- A. Grigor'yan, L. Saloff-Coste, Dirichlet heat kernel in the exterior of a compact set, Comm. Pure Appl. Math. 55 (2002), 93-133 Zbl1037.58018MR1857881
- A. Grigor'yan, L. Saloff-Coste, Hitting probabilities for Brownian motion on Riemannian manifolds, J. Math. Pures et Appl. 81 (2002), 115-142 Zbl1042.58022MR1994606
- M. Gromov, Structures métriques pour les variétés Riemannienes, (1981), Cedic/Ferdnand Nathan, Paris Zbl0509.53034MR682063
- P. Hajlasz, P. Koskela, Sobolev Met Poincaré, 688 (2000), Memoirs of the AMS Zbl0954.46022MR1683160
- W. Hebisch, L. Saloff-Coste, On the relation between elliptic and parabolic Harnack inequalities, Ann. Inst. Fourier 51 (2001), 1437-1481 Zbl0988.58007MR1860672
- D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander condition, Duke Math. J. 53 (1986), 503-523 Zbl0614.35066MR850547
- M. Kanai, Analytic inequalities, and rough isometries between non-compact Riemannian manifolds, 1201 (1986), 122-137, Springer Zbl0593.53026
- A. Kasue, Harmonic functions with growth conditions on a manifold of asymptotically nonnegative curvature I., Geometry and Analysis on Manifolds (Katata/Kyoto, 1987) (1988), 158-181, Springer Zbl0685.31004
- J.L. Kazdan, F.W. Warner, Prescribing curvatures, Proceedings of Symposia in Pure Mathematics 27 (1975), 309-319 Zbl0313.53017MR394505
- S. Kusuoka, D. Stroock, Application of Malliavin calculus, III, J. Fac. Sci. Tokyo Univ., Sect. 1A, Math. 34 (1987), 391-442 Zbl0633.60078MR914028
- E.M. Landis, The second order equations of elliptic and parabolic type (Russian), (1971), Nauka, Moscow Zbl0226.35001
- P. Li, L.F. Tam, Positive harmonic functions on complete manifolds with non-negative curvature outside a compact set, Ann. Math. 125 (1987), 171-207 Zbl0622.58001MR873381
- P. Li, L.F. Tam, Green's function, harmonic functions and volume comparison, J. Diff. Geom. 41 (1995), 277-318 Zbl0827.53033
- P. Li, S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201 Zbl0611.58045MR834612
- Z.-D. Liu, Ball covering property and nonnegative Ricci curvature outside a compact set, Differential Geometry: Riemannian Geometry (Los Angeles, CA, 1990) 54, Part 3 (1993), Amer. Math. Soc., Providence, RI Zbl0788.53028
- A.G. Losev, Some Liouville theorems on Riemannian manifolds of a special type (Russian), Izv. Vyssh. Uchebn. Zaved. Matematika 12 (1991), 15-24 Zbl0764.58035MR1205018
- G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Revista Matematica Iberoamericana 8 (1992), 367-439 Zbl0804.35015MR1202416
- P. March, Brownian motion and harmonic functions on rotationally symmetric manifolds, Ann. Prob. 14 (1986), 793-801 Zbl0593.60078MR841584
- J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591 Zbl0111.09302MR159138
- J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101-134 Zbl0149.06902MR159139
- M. Murata, Positive harmonic functions on rotationary symmetric Riemannian manifolds, Potential Theory (1992), 251-259, Walter de Gruyter, Berlin Zbl0777.53039
- F.O. Porper, S.D. Eidel'man, Two-side estimates of fundamental solutions of second-order parabolic equations and some applications (Russian), Uspekhi Matem. Nauk 39 (1984), 101-156 Zbl0582.35052MR747792
- L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices 2 (1992), 27-38 Zbl0769.58054MR1150597
- L. Saloff-Coste, Parabolic Harnack inequality for divergence form second order differential operators, Potential Analysis 4 (1995), 429-467 Zbl0840.31006MR1354894
- L. Saloff-Coste, Lectures on finite Markov chains,, (1997), Springer Zbl0885.60061MR1490046
- L. Saloff-Coste, Aspects of Sobolev inequalities, 289 (2002), Cambridge Univ. Press Zbl0991.35002
- K.-Th. Sturm, Sharp estimates for capacities and applications to symmetrical diffusions, Probability theory and related fields 103 (1995), 73-89 Zbl0828.60062MR1347171
- C.-J. Sung, L.-F. Tam, J. Wang, Spaces of harmonic functions, J. London Math. Soc. 2 (2000), 789-806 Zbl0963.31004MR1766105
- S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228 Zbl0291.31002MR431040
Citations in EuDML Documents
top- Luisa Moschini, Alberto Tesei, Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential
- Gilles Carron, Riesz transforms on connected sums
- Alexander Grigor’yan, Laurent Saloff-Coste, Heat kernel on manifolds with ends
- Erika Battaglia, Stefano Biagi, Andrea Bonfiglioli, [unknown]
- Pascal Auscher, Thierry Coulhon, Riesz transform on manifolds and Poincaré inequalitie
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.