Spectrum of the Laplace operator and periodic geodesics: thirty years after
- [1] Institut Fourier Unité mixte de recherche CNRS-UJF 5582 BP 74 38402-Saint Martin d’Hères Cedex (France)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 7, page 2429-2463
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topColin de Verdière, Yves. "Spectrum of the Laplace operator and periodic geodesics: thirty years after." Annales de l’institut Fourier 57.7 (2007): 2429-2463. <http://eudml.org/doc/10303>.
@article{ColindeVerdière2007,
abstract = {What is called the “Semi-classical trace formula” is a formula expressing the smoothed density of states of the Laplace operator on a compact Riemannian manifold in terms of the periodic geodesics. Mathematical derivation of such formulas were provided in the seventies by several authors. The main goal of this paper is to state the formula and to give a self-contained proof independent of the difficult use of the global calculus of Fourier Integral Operators. This proof is close in the spirit of the first proof given in the authors thesis. It uses the time-dependent Schrödinger equation, some facts about the geodesic flow, the stationary phase approximation and the metaplectic representation as a computational tool.},
affiliation = {Institut Fourier Unité mixte de recherche CNRS-UJF 5582 BP 74 38402-Saint Martin d’Hères Cedex (France)},
author = {Colin de Verdière, Yves},
journal = {Annales de l’institut Fourier},
keywords = {Laplace operator; semi-classics; symplectic geometry; twist map; trace formula; spectrum; periodic geodesics; metaplectic; determinant; semiclassical trace formulas},
language = {eng},
number = {7},
pages = {2429-2463},
publisher = {Association des Annales de l’institut Fourier},
title = {Spectrum of the Laplace operator and periodic geodesics: thirty years after},
url = {http://eudml.org/doc/10303},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Colin de Verdière, Yves
TI - Spectrum of the Laplace operator and periodic geodesics: thirty years after
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2429
EP - 2463
AB - What is called the “Semi-classical trace formula” is a formula expressing the smoothed density of states of the Laplace operator on a compact Riemannian manifold in terms of the periodic geodesics. Mathematical derivation of such formulas were provided in the seventies by several authors. The main goal of this paper is to state the formula and to give a self-contained proof independent of the difficult use of the global calculus of Fourier Integral Operators. This proof is close in the spirit of the first proof given in the authors thesis. It uses the time-dependent Schrödinger equation, some facts about the geodesic flow, the stationary phase approximation and the metaplectic representation as a computational tool.
LA - eng
KW - Laplace operator; semi-classics; symplectic geometry; twist map; trace formula; spectrum; periodic geodesics; metaplectic; determinant; semiclassical trace formulas
UR - http://eudml.org/doc/10303
ER -
References
top- R. Abraham, J. Marsden, Foundations of Mechanics, (1978), Reading, Massachusetts Zbl0393.70001MR515141
- V. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Math. 60 (1989), Springer Zbl0386.70001MR997295
- V. Arnold, A. Varchenko, S. Goussein-Zade, Singularités des applications différentiables, (1986), Mir, Moscou
- R. Balian, C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain I, Ann. of Physics 60 (1970) Zbl0207.40202MR270008
- R. Balian, C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain II, Ann. of Physics 64 (1971) Zbl0218.35071MR284729
- R. Balian, C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain III, Ann. of Physics 69 (1972) Zbl0226.35070MR289962
- R. Balian, C. Bloch, Solution of the Schrödinger equation in terms of classical paths, Ann. of Phys. 85 (1974) Zbl0281.35029MR438937
- S. Bates, A. Weinstein, Lectures on the Geometry of Quantization, Berkeley Math. Lecture Notes 8 (1997), Amer. Math. Soc. Zbl1049.53061MR1806388
- J. Bellissard, al., Transition to Chaos in Classical and Quantum Mechanics, Lecture Notes in Maths 1589 (1994), Springer MR1323220
- M. Berger, P. Gauduchon, E. Mazet, Le spectre d’une variété riemannienne compacte, Lecture Notes in Maths (1971), Springer Zbl0223.53034
- Marcel Berger, Riemannian geometry during the second half of the twentieth century, 17 (2000), American Mathematical Society Zbl0944.53001MR1729907
- M. V. Berry, M. Tabor, Closed orbits and the regular bound spectrum, Proc. Royal Soc. London Ser. A 349 (1976), 101-123 MR471721
- E. Bogomolny, N. Pavloff, C. Schmit, Diffractive corrections in the trace formula for polygonal billiards, Phys. Rev. E (3) 61 (2000), 3689-3711 MR1788658
- O. Bohigas, M.-J. Giannoni, C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52 (1984), 1-4 Zbl1119.81326MR730191
- R. Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math. 9 (1956), 171-206 Zbl0074.17202MR90730
- R. Brummelhuis, A. Uribe, A trace formula for Schrödinger operators, Comm. Math. Phys. 136 (1991), 567-584 Zbl0729.35093MR1099696
- B. Camus, Spectral estimates for degenerated critical levels, J. Fourier Anal. Appl. 12 (2006), 455-495 Zbl1112.47040MR2267632
- R. Cassanas, A Gutzwiller type formula for a reduced Hamiltonian within the framework of symmetry, C. R. Math. Acad. Sci. Paris 340 (2005), 21-26 Zbl1142.81331MR2112035
- A.-M. Charbonnel, G. Popov, A semi-classical trace formula for several commuting operators, Comm. Partial Differential Equations 24 (1999), 283-323 Zbl0927.35138MR1672009
- J. Chazarain, Formule de Poisson pour les variétés riemanniennes, Invent. Math. 24 (1974), 65-82 Zbl0281.35028MR343320
- J. Duistermaat, On the Morse index in variational calculus, Advances in Math. 21 (1976), 173-195 Zbl0361.49026MR649277
- J. Duistermaat, V. Guillemin, The spectrum of positive elliptic operators and periodic geodesics, Invent. Math. 29 (1975), 39-79 Zbl0307.35071MR405514
- F. Faure, Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace formula, Annales de l’Institut Fourier 57 (2007), 2525-2599 Zbl1145.81035
- R. Feynman, A. Hibbs, Quantum Mechanics and Path Integrals, (1965), McGraw-Hill, New York Zbl0176.54902
- G. Folland, Harmonic Analysis in Phase Space, (1989), Princeton University Press Zbl0682.43001MR983366
- V. Guillemin, Wave-trace invariants, Duke Math. J. 83 (1996), 287-352 Zbl0858.58051MR1390650
- V. Guillemin, R. Melrose, The Poisson summation formula for manifolds with boundary, Adv. in Math. 32 (1979), 204-232 Zbl0421.35082MR539531
- Victor Guillemin, Clean intersection theory and Fourier integrals, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974), Lecture Notes in Math., Vol. 459 (1975), 23-35, Springer Zbl0315.42012MR415689
- M. Gutzwiller, Periodic orbits and classical quantization conditions, J. Math. Phys. 12 (1971), 343-358
- D. Hejhal, The Selberg trace formula and the Riemann function, Duke Math. J. 43 (1976), 441-482 Zbl0346.10010MR414490
- L. Hillairet, Contribution of periodic diffractive geodesics, J. Funct. Anal. 226 (2005), 48-89 Zbl1084.58009MR2158175
- H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, (1994), Birkhäuser Zbl0837.58013MR1306732
- L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193-218 Zbl0164.13201MR609014
- L. Hörmander, The Analysis of Linear Partial Differential Operators I, (1983), Springer Zbl0521.35001MR717035
- L. Hörmander, The Analysis of Linear Partial Differential Operators I, (1985), Springer Zbl0521.35001MR781537
- H. Huber, Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen, Math. Ann. 138 (1959), 1-26 Zbl0089.06101MR109212
- M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1966), 1-23 Zbl0139.05603MR201237
- V. Kozlov, D. Treshchëv, Billiards: a genetic introduction to the dynamics of systems with impacts, Transl. Math. Monographs 89 (1991), Amer. Math. Soc. Zbl0729.34027MR1118378
- P. D. Lax, Asymptotic solutions of oscillatory initial value problems, Duke Math. J. 24 (1957), 627-646 Zbl0083.31801MR97628
- S. Levit, U. Smilansky, A theorem on infinite products of eigenvalues of Sturm type operators, Proc. Amer. Math. Soc. 65 (1977), 299-303 Zbl0374.34016MR457836
- B. Malgrange, Intégrales asymptotiques et monodromie, Ann. Sci. École Norm. Sup. 7 (1974), 405-430 Zbl0305.32008MR372243
- J. Marklof, Selberg’s trace formula: an introduction Zbl1282.11053
- E. Meinrenken, Semi-classical principal symbols and Gutzwiller’s trace formula, Rep. Math. Phys. 31 (1992), 279-295 Zbl0794.58046
- E. Meinrenken, Trace formulas and Conley-Zehnder index, J. Geom. Phys. 13 (1994), 1-15 Zbl0791.53040MR1259446
- L. Michel (ed.), Symmetry, invariants, topology, Physics reports 341 (2001), 1-6 Zbl0971.22500MR1845463
- J. Milnor, Morse Theory, (1967), Princeton Zbl0108.10401
- L. Boutet de Monvel, V. Guillemin, The spectral theory of Toeplitz operators, Annals of Math. Studies 99 (1981), Princeton Zbl0469.47021MR620794
- C. Morette, On the definition and approximation of Feynman’s path integrals, Physical Rev. (2) 81 (1951), 848-852 Zbl0042.45506
- D. B. Ray, I. M. Singer, -torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971), 145-210 Zbl0239.58014MR295381
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87 Zbl0072.08201MR88511
- J.-P. Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425-505 Zbl0045.26003MR45386
- Y. Colin de Verdière, Spectre du Laplacien et longueurs des géodésiques périodiques I, Comp. Math. 27 (1973), 80-106 Zbl0272.53034MR1557068
- Y. Colin de Verdière, Spectre du Laplacien et longueurs des géodésiques périodiques II, Comp. Math. 27 (1973), 159-184 Zbl0281.53036MR1557068
- Y. Colin de Verdière, Sur le spectre des opérateurs elliptiques bicaractéristiques toutes périodiques, Comment. Math. Helv. 54 (1979), 508-522 Zbl0459.58014MR543346
- Y. Colin de Verdière, Déterminants et intégrales de Fresnel, Ann. Inst. Fourier 49 (1999), 861-881 Zbl0920.35042MR1703428
- Y. Colin de Verdière, Bohr-Sommerfeld rules to all orders, Ann. Henri Poincaré 6 (2005), 925-936 Zbl1080.81029MR2219863
- A. Weinstein, Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J. 44 (1977), 883-892 Zbl0385.58013MR482878
- Alan Weinstein, On Maslov’s quantization condition, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974),Lecture Notes in Math., Vol. 459 (1975), 341-372, Springer Zbl0348.58016
- J. Yorke, Periods of periodic solutions and the Lipschitz constant, Proc. Amer. Math. Soc. 22 (1969), 509-512 Zbl0184.12103MR245916
- S. Zelditch, Wave trace invariants at elliptic closed geodesics, GAFA 7 (1997), 145-213 Zbl0876.58010MR1437476
- S. Zelditch, Wave invariants for non-degenerate closed geodesics, GAFA 8 (1998), 179-207 Zbl0908.58022MR1601862
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.