Spectrum of the Laplace operator and periodic geodesics: thirty years after

Yves Colin de Verdière[1]

  • [1] Institut Fourier Unité mixte de recherche CNRS-UJF 5582 BP 74 38402-Saint Martin d’Hères Cedex (France)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 7, page 2429-2463
  • ISSN: 0373-0956

Abstract

top
What is called the “Semi-classical trace formula” is a formula expressing the smoothed density of states of the Laplace operator on a compact Riemannian manifold in terms of the periodic geodesics. Mathematical derivation of such formulas were provided in the seventies by several authors. The main goal of this paper is to state the formula and to give a self-contained proof independent of the difficult use of the global calculus of Fourier Integral Operators. This proof is close in the spirit of the first proof given in the authors thesis. It uses the time-dependent Schrödinger equation, some facts about the geodesic flow, the stationary phase approximation and the metaplectic representation as a computational tool.

How to cite

top

Colin de Verdière, Yves. "Spectrum of the Laplace operator and periodic geodesics: thirty years after." Annales de l’institut Fourier 57.7 (2007): 2429-2463. <http://eudml.org/doc/10303>.

@article{ColindeVerdière2007,
abstract = {What is called the “Semi-classical trace formula” is a formula expressing the smoothed density of states of the Laplace operator on a compact Riemannian manifold in terms of the periodic geodesics. Mathematical derivation of such formulas were provided in the seventies by several authors. The main goal of this paper is to state the formula and to give a self-contained proof independent of the difficult use of the global calculus of Fourier Integral Operators. This proof is close in the spirit of the first proof given in the authors thesis. It uses the time-dependent Schrödinger equation, some facts about the geodesic flow, the stationary phase approximation and the metaplectic representation as a computational tool.},
affiliation = {Institut Fourier Unité mixte de recherche CNRS-UJF 5582 BP 74 38402-Saint Martin d’Hères Cedex (France)},
author = {Colin de Verdière, Yves},
journal = {Annales de l’institut Fourier},
keywords = {Laplace operator; semi-classics; symplectic geometry; twist map; trace formula; spectrum; periodic geodesics; metaplectic; determinant; semiclassical trace formulas},
language = {eng},
number = {7},
pages = {2429-2463},
publisher = {Association des Annales de l’institut Fourier},
title = {Spectrum of the Laplace operator and periodic geodesics: thirty years after},
url = {http://eudml.org/doc/10303},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Colin de Verdière, Yves
TI - Spectrum of the Laplace operator and periodic geodesics: thirty years after
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2429
EP - 2463
AB - What is called the “Semi-classical trace formula” is a formula expressing the smoothed density of states of the Laplace operator on a compact Riemannian manifold in terms of the periodic geodesics. Mathematical derivation of such formulas were provided in the seventies by several authors. The main goal of this paper is to state the formula and to give a self-contained proof independent of the difficult use of the global calculus of Fourier Integral Operators. This proof is close in the spirit of the first proof given in the authors thesis. It uses the time-dependent Schrödinger equation, some facts about the geodesic flow, the stationary phase approximation and the metaplectic representation as a computational tool.
LA - eng
KW - Laplace operator; semi-classics; symplectic geometry; twist map; trace formula; spectrum; periodic geodesics; metaplectic; determinant; semiclassical trace formulas
UR - http://eudml.org/doc/10303
ER -

References

top
  1. R. Abraham, J. Marsden, Foundations of Mechanics, (1978), Reading, Massachusetts Zbl0393.70001MR515141
  2. V. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Math. 60 (1989), Springer Zbl0386.70001MR997295
  3. V. Arnold, A. Varchenko, S. Goussein-Zade, Singularités des applications différentiables, (1986), Mir, Moscou 
  4. R. Balian, C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain I, Ann. of Physics 60 (1970) Zbl0207.40202MR270008
  5. R. Balian, C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain II, Ann. of Physics 64 (1971) Zbl0218.35071MR284729
  6. R. Balian, C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain III, Ann. of Physics 69 (1972) Zbl0226.35070MR289962
  7. R. Balian, C. Bloch, Solution of the Schrödinger equation in terms of classical paths, Ann. of Phys. 85 (1974) Zbl0281.35029MR438937
  8. S. Bates, A. Weinstein, Lectures on the Geometry of Quantization, Berkeley Math. Lecture Notes 8 (1997), Amer. Math. Soc. Zbl1049.53061MR1806388
  9. J. Bellissard, al., Transition to Chaos in Classical and Quantum Mechanics, Lecture Notes in Maths 1589 (1994), Springer MR1323220
  10. M. Berger, P. Gauduchon, E. Mazet, Le spectre d’une variété riemannienne compacte, Lecture Notes in Maths (1971), Springer Zbl0223.53034
  11. Marcel Berger, Riemannian geometry during the second half of the twentieth century, 17 (2000), American Mathematical Society Zbl0944.53001MR1729907
  12. M. V. Berry, M. Tabor, Closed orbits and the regular bound spectrum, Proc. Royal Soc. London Ser. A 349 (1976), 101-123 MR471721
  13. E. Bogomolny, N. Pavloff, C. Schmit, Diffractive corrections in the trace formula for polygonal billiards, Phys. Rev. E (3) 61 (2000), 3689-3711 MR1788658
  14. O. Bohigas, M.-J. Giannoni, C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52 (1984), 1-4 Zbl1119.81326MR730191
  15. R. Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math. 9 (1956), 171-206 Zbl0074.17202MR90730
  16. R. Brummelhuis, A. Uribe, A trace formula for Schrödinger operators, Comm. Math. Phys. 136 (1991), 567-584 Zbl0729.35093MR1099696
  17. B. Camus, Spectral estimates for degenerated critical levels, J. Fourier Anal. Appl. 12 (2006), 455-495 Zbl1112.47040MR2267632
  18. R. Cassanas, A Gutzwiller type formula for a reduced Hamiltonian within the framework of symmetry, C. R. Math. Acad. Sci. Paris 340 (2005), 21-26 Zbl1142.81331MR2112035
  19. A.-M. Charbonnel, G. Popov, A semi-classical trace formula for several commuting operators, Comm. Partial Differential Equations 24 (1999), 283-323 Zbl0927.35138MR1672009
  20. J. Chazarain, Formule de Poisson pour les variétés riemanniennes, Invent. Math. 24 (1974), 65-82 Zbl0281.35028MR343320
  21. J. Duistermaat, On the Morse index in variational calculus, Advances in Math. 21 (1976), 173-195 Zbl0361.49026MR649277
  22. J. Duistermaat, V. Guillemin, The spectrum of positive elliptic operators and periodic geodesics, Invent. Math. 29 (1975), 39-79 Zbl0307.35071MR405514
  23. F. Faure, Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace formula, Annales de l’Institut Fourier 57 (2007), 2525-2599 Zbl1145.81035
  24. R. Feynman, A. Hibbs, Quantum Mechanics and Path Integrals, (1965), McGraw-Hill, New York Zbl0176.54902
  25. G. Folland, Harmonic Analysis in Phase Space, (1989), Princeton University Press Zbl0682.43001MR983366
  26. V. Guillemin, Wave-trace invariants, Duke Math. J. 83 (1996), 287-352 Zbl0858.58051MR1390650
  27. V. Guillemin, R. Melrose, The Poisson summation formula for manifolds with boundary, Adv. in Math. 32 (1979), 204-232 Zbl0421.35082MR539531
  28. Victor Guillemin, Clean intersection theory and Fourier integrals, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974), Lecture Notes in Math., Vol. 459 (1975), 23-35, Springer Zbl0315.42012MR415689
  29. M. Gutzwiller, Periodic orbits and classical quantization conditions, J. Math. Phys. 12 (1971), 343-358 
  30. D. Hejhal, The Selberg trace formula and the Riemann ζ function, Duke Math. J. 43 (1976), 441-482 Zbl0346.10010MR414490
  31. L. Hillairet, Contribution of periodic diffractive geodesics, J. Funct. Anal. 226 (2005), 48-89 Zbl1084.58009MR2158175
  32. H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, (1994), Birkhäuser Zbl0837.58013MR1306732
  33. L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193-218 Zbl0164.13201MR609014
  34. L. Hörmander, The Analysis of Linear Partial Differential Operators I, (1983), Springer Zbl0521.35001MR717035
  35. L. Hörmander, The Analysis of Linear Partial Differential Operators I, (1985), Springer Zbl0521.35001MR781537
  36. H. Huber, Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen, Math. Ann. 138 (1959), 1-26 Zbl0089.06101MR109212
  37. M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1966), 1-23 Zbl0139.05603MR201237
  38. V. Kozlov, D. Treshchëv, Billiards: a genetic introduction to the dynamics of systems with impacts, Transl. Math. Monographs 89 (1991), Amer. Math. Soc. Zbl0729.34027MR1118378
  39. P. D. Lax, Asymptotic solutions of oscillatory initial value problems, Duke Math. J. 24 (1957), 627-646 Zbl0083.31801MR97628
  40. S. Levit, U. Smilansky, A theorem on infinite products of eigenvalues of Sturm type operators, Proc. Amer. Math. Soc. 65 (1977), 299-303 Zbl0374.34016MR457836
  41. B. Malgrange, Intégrales asymptotiques et monodromie, Ann. Sci. École Norm. Sup. 7 (1974), 405-430 Zbl0305.32008MR372243
  42. J. Marklof, Selberg’s trace formula: an introduction Zbl1282.11053
  43. E. Meinrenken, Semi-classical principal symbols and Gutzwiller’s trace formula, Rep. Math. Phys. 31 (1992), 279-295 Zbl0794.58046
  44. E. Meinrenken, Trace formulas and Conley-Zehnder index, J. Geom. Phys. 13 (1994), 1-15 Zbl0791.53040MR1259446
  45. L. Michel (ed.), Symmetry, invariants, topology, Physics reports 341 (2001), 1-6 Zbl0971.22500MR1845463
  46. J. Milnor, Morse Theory, (1967), Princeton Zbl0108.10401
  47. L. Boutet de Monvel, V. Guillemin, The spectral theory of Toeplitz operators, Annals of Math. Studies 99 (1981), Princeton Zbl0469.47021MR620794
  48. C. Morette, On the definition and approximation of Feynman’s path integrals, Physical Rev. (2) 81 (1951), 848-852 Zbl0042.45506
  49. D. B. Ray, I. M. Singer, R -torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971), 145-210 Zbl0239.58014MR295381
  50. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87 Zbl0072.08201MR88511
  51. J.-P. Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425-505 Zbl0045.26003MR45386
  52. Y. Colin de Verdière, Spectre du Laplacien et longueurs des géodésiques périodiques I, Comp. Math. 27 (1973), 80-106 Zbl0272.53034MR1557068
  53. Y. Colin de Verdière, Spectre du Laplacien et longueurs des géodésiques périodiques II, Comp. Math. 27 (1973), 159-184 Zbl0281.53036MR1557068
  54. Y. Colin de Verdière, Sur le spectre des opérateurs elliptiques bicaractéristiques toutes périodiques, Comment. Math. Helv. 54 (1979), 508-522 Zbl0459.58014MR543346
  55. Y. Colin de Verdière, Déterminants et intégrales de Fresnel, Ann. Inst. Fourier 49 (1999), 861-881 Zbl0920.35042MR1703428
  56. Y. Colin de Verdière, Bohr-Sommerfeld rules to all orders, Ann. Henri Poincaré 6 (2005), 925-936 Zbl1080.81029MR2219863
  57. A. Weinstein, Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J. 44 (1977), 883-892 Zbl0385.58013MR482878
  58. Alan Weinstein, On Maslov’s quantization condition, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974),Lecture Notes in Math., Vol. 459 (1975), 341-372, Springer Zbl0348.58016
  59. J. Yorke, Periods of periodic solutions and the Lipschitz constant, Proc. Amer. Math. Soc. 22 (1969), 509-512 Zbl0184.12103MR245916
  60. S. Zelditch, Wave trace invariants at elliptic closed geodesics, GAFA 7 (1997), 145-213 Zbl0876.58010MR1437476
  61. S. Zelditch, Wave invariants for non-degenerate closed geodesics, GAFA 8 (1998), 179-207 Zbl0908.58022MR1601862

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.