Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace formula
- [1] Institut Fourier 100 rue des Maths, BP74 38402 St Martin d’Heres (France)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 7, page 2525-2599
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFaure, Frédéric. "Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace formula." Annales de l’institut Fourier 57.7 (2007): 2525-2599. <http://eudml.org/doc/10305>.
@article{Faure2007,
abstract = {We consider a nonlinear area preserving Anosov map $M$ on the torus phase space, which is the simplest example of a fully chaotic dynamics. We are interested in the quantum dynamics for long time, generated by the unitary quantum propagator $\hat\{M\}$. The usual semi-classical Trace formula expresses $\mbox \{Tr\}\left(\hat\{M\}^\{t\}\right)$ for finite time $t$, in the limit $\hbar\rightarrow 0$, in terms of periodic orbits of $M$ of period $ t$. Recent work reach time $t \ll t_\{E\}/6$ where $t_\{E\} = \log (1/\hbar)/\lambda $ is the Ehrenfest time, and $\lambda $ is the Lyapounov coefficient. Using a semi-classical normal form description of the dynamics uniformly over phase space, we show how to extend the trace formula for longer time of the form $t = C.t_\{E\}$ where $C$ is any constant, with an arbitrary small error.},
affiliation = {Institut Fourier 100 rue des Maths, BP74 38402 St Martin d’Heres (France)},
author = {Faure, Frédéric},
journal = {Annales de l’institut Fourier},
keywords = {Quantum chaos; hyperbolic map; semiclassical trace formula; Ehrenfest time; quantum chaos},
language = {eng},
number = {7},
pages = {2525-2599},
publisher = {Association des Annales de l’institut Fourier},
title = {Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace formula},
url = {http://eudml.org/doc/10305},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Faure, Frédéric
TI - Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace formula
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2525
EP - 2599
AB - We consider a nonlinear area preserving Anosov map $M$ on the torus phase space, which is the simplest example of a fully chaotic dynamics. We are interested in the quantum dynamics for long time, generated by the unitary quantum propagator $\hat{M}$. The usual semi-classical Trace formula expresses $\mbox {Tr}\left(\hat{M}^{t}\right)$ for finite time $t$, in the limit $\hbar\rightarrow 0$, in terms of periodic orbits of $M$ of period $ t$. Recent work reach time $t \ll t_{E}/6$ where $t_{E} = \log (1/\hbar)/\lambda $ is the Ehrenfest time, and $\lambda $ is the Lyapounov coefficient. Using a semi-classical normal form description of the dynamics uniformly over phase space, we show how to extend the trace formula for longer time of the form $t = C.t_{E}$ where $C$ is any constant, with an arbitrary small error.
LA - eng
KW - Quantum chaos; hyperbolic map; semiclassical trace formula; Ehrenfest time; quantum chaos
UR - http://eudml.org/doc/10305
ER -
References
top- N. Anantharaman, Entropy and the localization of eigenfunctions, (2004) Zbl1175.35036
- N. Anantharaman, S. Nonnenmacher, Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, (2006) Zbl1145.81033
- V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, (1988), Springer Verlag Zbl0507.34003MR947141
- D. Bambusi, S. Graffi, T. Paul, Long time semiclassical approximation of quantum flows: A proof of the Ehrenfest time, Asymptot. Anal. 21 (1999), 149-160 Zbl0934.35142MR1723551
- O. Bohigas, Random matrix theories and chaotic dynamics, Chaos and Quantum Physics, Proceedings of the Les Houches Summer School (1989) 45 (1991), 87-199 MR1188418
- O. Bohigas, M. J. Giannoni, C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52 (1984), 1-4 Zbl1119.81326MR730191
- F. Bonechi, S. DeBièvre, Exponential mixing and ln(h) timescales in quantized hyperbolic maps on the torus, Comm. Math. Phys. 211 (2000), 659-686 Zbl1053.81032MR1773813
- J. M. Bouclet, S. DeBièvre, Long time propagation and control on scarring for perturbated quantized hyperbolic toral automorphisms, Annales Henri Poincaré 6 (2005), 885-913 Zbl1088.81049MR2219861
- A. Bouzouina, D. Robert, Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J. 111 (2002), 223-252 Zbl1069.35061MR1882134
- M. Cargo, A. Gracia-Saz, R. G. Littlejohn, M. W. Reinsch, P. M. Rios, Quantum normal forms, moyal star product and bohr-sommerfeld approximation, J. Phys. A: Math. Gen. 38 (2005), 1997-2004 Zbl1073.81056MR2124376
- Y. Colin de Verdière, Ergodicité et fonctions propres du laplacien. (Ergodicity and eigenfunctions of the Laplacian), Commun. Math. Phys. 102 (1985), 497-502 Zbl0592.58050MR818831
- Y. Colin de Verdière, B. Parisse, Équilibre instable en régime semi-classique - I. Concentration microlocale, Communications in Partial Differential Equations 19 (1994), 1535-1563 Zbl0819.35116MR1294470
- Y. Colin de Verdière, B. Parisse, Équilibre instable en régime semi-classique - II. Conditions de Bohr-Sommerfeld, Annales de l’Institut Henri Poincaré- Physique Théorique 61 (1994), 347-367 Zbl0845.35076
- Y. Colin de Verdière, B. Parisse, Singular bohr-sommerfeld rules, Commun. Math. Phys 205 (1999), 459-500 Zbl1157.81310MR1712567
- M. Combescure, J. Ralston, D. Robert, A proof of the Gutzwiller semiclassical trace formula using coherent states decomposition, Commun. Math. Phys. 202 (1999), 463-480 Zbl0939.58031MR1690026
- M. Combescure, D. Robert, Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow, Asymptotic Anal. 14 (1997), 377-404 Zbl0894.35026MR1461126
- S. De Bièvre, Recent results on quantum map eigenstates, Mathematical physics of quantum mechanics 690 (2006), 367-381, Springer, Berlin Zbl1167.81388MR2234923
- Stephan De Bièvre, Quantum chaos: a brief first visit, Second Summer School in Analysis and Mathematical Physics (Cuernavaca, 2000) 289 (2001), 161-218, Amer. Math. Soc. Zbl1009.81020MR1864542
- D. DeLatte, Nonstationnary normal forms and cocycle invariants, Random and Computational dynamics 1 (1992), 229-259 Zbl0778.58058MR1186375
- D. DeLatte, On normal forms in hamiltonian dynamics, a new approach to some convergence questions, Ergod. Th. and Dynam. Sys. 15 (1995), 49-66 Zbl0820.58052MR1314968
- M. Dimassi, J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, 268 (1999), Cambridge University Press Zbl0926.35002MR1735654
- B. Eckhardt, S. Fishman, J. Keating, O. Agam, J. Main, K. Müller, Approach to ergodicity in quantum wave functions, Phys. Rev. E 52 (1995), 5893-5903
- L. Evans, M. Zworski, Lectures on semiclassical analysis, (2003)
- F. Faure, Semiclassical formula beyond the ehrenfest time in quantum chaos. (II) propagator formula, (2006)
- F. Faure, Prequantum chaos: Resonances of the prequantum cat map, Journal of Modern Dynamics 1 (2007), 255-285 Zbl1145.81034MR2285729
- F. Faure, S. Nonnenmacher, On the maximal scarring for quantum cat map eigenstates, Communications in Mathematical Physics 245 (2004), 201-214 Zbl1071.81044MR2036373
- F. Faure, S. Nonnenmacher, S. DeBièvre, Scarred eigenstates for quantum cat maps of minimal periods, Communications in Mathematical Physics 239 (2003), 449-492 Zbl1033.81024MR2000926
- G. B. Folland, Harmonic Analysis in phase space, (1989), Princeton University Press Zbl0682.43001MR983366
- M. J. Giannoni, A. Voros, J. Zinn-Justin, Chaos and Quantum Physics, (1991), North-Holland MR1188415
- I. Gohberg, S. Goldberg, N. Krupnik, Traces and Determinants of Linear Operators, (2000), Birkhauser Zbl0946.47013MR1744872
- A. Gracia-Saz, The symbol of a function of a pseudo-differential operator., Annales de l’Institut Fourier 55 (2005), 2257-2284 Zbl1091.53062
- V. Guillemin, Wave-trace invariants, Duke Math. J. 83 (1996), 287-352 Zbl0858.58051MR1390650
- M. Gutzwiller, Periodic orbits and classical quantization conditions, J. Math. Phys. 12 (1971), 343-358
- M. Gutzwiller, Chaos in classical and quantum mechanics, (1991), Springer-Verlag Zbl0727.70029MR1077246
- F. Haake, Quantum Signatures of Chaos, (2001), Springer Zbl0985.81038MR1806548
- G. A. Hagedorn, A. Joye, Exponentially acurrate semiclassical dynamics: Propagation, localization, ehrenfest times, scattering, and more general states, Ann. Henri Poincaré 1 (2000), 837-883 Zbl1050.81017MR1806980
- B. Hasselblatt, Hyperbolic dynamics, Handbook of Dynamical Systems, North Holland 1A (2002), 239-320 Zbl1047.37018MR1928520
- E. J. Heller, Time dependant approach to semiclassical dynamics, J. Chem. Phys. 62 (1975), 1544-1555
- K. Hepp, The classical limit of quantum mechanical correlation funtions, Comm. Math. Phys. 35 (1974), 265-277 MR332046
- S. Hurder, A. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Publ. Math., Inst. Hautes Étud. Sci. 72 (1990), 5-61 Zbl0725.58034MR1087392
- A. Iantchenko, The Birkhoff normal form for a Fourier integral operator. (La forme normale de Birkhoff pour un opérateur intégral de Fourier.), Asymptotic Anal. 17 (1998), 71-92 Zbl1155.58303MR1632700
- A. Iantchenko, J. Sjöstrand, Birkhoff normal forms for Fourier integral operators. II, Am. J. Math. 124 (2002), 817-850 Zbl1011.35144MR1914459
- A. Iantchenko, J. Sjöstrand, M. Zworski, Birkhoff normal forms in semi-classical inverse problems, Math. Res. Lett. 9 (2002), 337-362 Zbl1258.35208MR1909649
- A. Joye, G. Hagedorn, Semiclassical dynamics with exponentially small error estimates, Comm. in Math. Phys. 207 (1999), 439-465 Zbl1031.81519MR1724830
- A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, (1995), Cambridge University Press Zbl0878.58020MR1326374
- J. P. Keating, Asymptotic properties of the periodic orbits of the cat maps, Nonlinearity 4 (1991), 277-307 Zbl0726.58036MR1107008
- J. P. Keating, The cat maps: quantum mechanics and classical motion, Nonlinearity 4 (1991), 309-341 Zbl0726.58037MR1107009
- R. G. Littlejohn, The semiclassical evolution of wave-packets, Phys. Rep. 138 (1986), 193-291 MR845963
- A. Martinez, An Introduction to Semiclassical and Microlocal Analysis, (2002), Springer, New York Zbl0994.35003MR1872698
- S. Nonnenmacher, Evolution of lagrangian states through pertubated cat maps, (2004), Preprint
- A. Perelomov, Generalized coherent states and their applications, (1986), Springer-Verlag Zbl0605.22013MR858831
- M. Pollicott, M. Yuri, Dynamical Systems and Ergodic theory, (1998), Cambridge University Press Zbl0897.28009MR1627681
- R. Schubert, Semi-classical behaviour of expectation values in time evolved lagrangian states for large times, Commun. Math. Phys. 256 (2005), 239-254 Zbl1067.81040MR2134343
- J. Sjöstrand, Resonances associated to a closed hyperbolic trajectory in dimension 2, Asymptotic Anal. 36 (2003), 93-113 Zbl1060.35096MR2021528
- J. Sjöstrand, M. Zworski, Quantum monodromy and semi-classical trace formulae, J. Math. Pures Appl. 1 (2002), 1-33 Zbl1038.58033MR1994881
- S. Tomsovic, E. J. Heller, Long-time semi-classical dynamics of chaos: the stadium billard, Physical Review E 47 (1993) MR1375006
- S. Zelditch, Uniform distribution of the eigenfunctions on compact hyperbolic surfaces, Rev. Mod. Phys. 55 (1987), 919-941 Zbl0643.58029MR916129
- S. Zelditch, Quantum dynamics from the semi-classical viewpoint, Lectures at I.H.P. (1996)
- S. Zelditch, Wave invariants at elliptic closed geodesics, Geom. Funct. Anal. 7 (1997), 145-213 Zbl0876.58010MR1437476
- S. Zelditch, Wave invariants for non-degenerate closed geodesics, Geom. Funct. Anal. 8 (1998), 179-217 Zbl0908.58022MR1601862
- S. Zelditch, Quantum ergodicity and mixing of eigenfunctions, Elsevier Encyclopedia of Math. Phys (2005)
- W. M. Zhang, D. H. Feng, R. Gilmore, Coherent states: theory and some applications, Rev. Mod. Phys. 62 (1990) MR1102385
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.