The symbol of a function of a pseudo-differential operator

Alfonso Gracia-saz[1]

  • [1] University of California at Berkeley, Department of Mathematics, Berkeley CA 94720-3840 (USA)

Annales de l'institut Fourier (2005)

  • Volume: 55, Issue: 7, page 2257-2284
  • ISSN: 0373-0956

Abstract

top
We give an explicit formula for the symbol of a function of an operator. Given a pseudo-differential operator A ^ on L 2 ( N ) with symbol A 𝒞 ( T * N ) and a smooth function f , we obtain the symbol of f ( A ^ ) in terms of A . As an application, Bohr-Sommerfeld quantization rules are explicitly calculated at order 4 in .

How to cite

top

Gracia-saz, Alfonso. "The symbol of a function of a pseudo-differential operator." Annales de l'institut Fourier 55.7 (2005): 2257-2284. <http://eudml.org/doc/116254>.

@article{Gracia2005,
abstract = {We give an explicit formula for the symbol of a function of an operator. Given a pseudo-differential operator $\widehat\{A\}$ on $L^2(\{\mathbb \{R\}\}^\{N\})$ with symbol $A \in \{\{\mathcal \{C\}\}^\{\infty \}(T^* \{\mathbb \{R\}\}^\{N\})\}$ and a smooth function $f$, we obtain the symbol of $f(\widehat\{A\})$ in terms of $A$. As an application, Bohr-Sommerfeld quantization rules are explicitly calculated at order 4 in $\hbar $.},
affiliation = {University of California at Berkeley, Department of Mathematics, Berkeley CA 94720-3840 (USA)},
author = {Gracia-saz, Alfonso},
journal = {Annales de l'institut Fourier},
keywords = {Deformation quantization; Moyal product; Weyl quantization; Bohr-Sommerfeld; symbol; diagrammatic technique; deformation quantization; Moyal products; Bohr-Sommerfeld symbol; diagrammatic technique.},
language = {eng},
number = {7},
pages = {2257-2284},
publisher = {Association des Annales de l'Institut Fourier},
title = {The symbol of a function of a pseudo-differential operator},
url = {http://eudml.org/doc/116254},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Gracia-saz, Alfonso
TI - The symbol of a function of a pseudo-differential operator
JO - Annales de l'institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 7
SP - 2257
EP - 2284
AB - We give an explicit formula for the symbol of a function of an operator. Given a pseudo-differential operator $\widehat{A}$ on $L^2({\mathbb {R}}^{N})$ with symbol $A \in {{\mathcal {C}}^{\infty }(T^* {\mathbb {R}}^{N})}$ and a smooth function $f$, we obtain the symbol of $f(\widehat{A})$ in terms of $A$. As an application, Bohr-Sommerfeld quantization rules are explicitly calculated at order 4 in $\hbar $.
LA - eng
KW - Deformation quantization; Moyal product; Weyl quantization; Bohr-Sommerfeld; symbol; diagrammatic technique; deformation quantization; Moyal products; Bohr-Sommerfeld symbol; diagrammatic technique.
UR - http://eudml.org/doc/116254
ER -

References

top
  1. M. Andersson, J. Sjöstrand, Functional calculus for non-commuting operators with real spectra via an iterated Cauchy formula Zbl1070.47009
  2. P.N. Argyres, The Bohr-Sommerfeld quantization rule and the Weyl correspondence, Physics 2 (1965), 131-139 
  3. F. Bayen, M. Flato, C. Fronsdal, D. Sternheimer A. Lichnerowicz, Deformation theory and quantization I-II, Ann. Phys. 111 (1978) Zbl0377.53025MR496158
  4. M. Cargo, A. Gracia- Saz, R.G. Littlejohn, M.W. Reinsch, P. de M. Rios, Quantum normal forms, Moyal star product and Bohr-Sommerfeld approximation, J. Phys. A, Math. and Gen. 38 (2005), 1977-2004 Zbl1073.81056MR2124376
  5. L. Charles, Berezin-Toeplitz operators, a semi-classical approach, Comm. Math. Phys. 239 (2003), 1-28 Zbl1059.47030MR1997113
  6. Y. Colin de Verdière, Bohr-Sommerfeld rules to all order, (2004) Zbl1080.81029
  7. E.B. Davies, Spectral theory and differential operators, 42 (1995), Cambridge University Press Zbl0893.47004MR1349825
  8. A. Grigis, J. Sjöstrand, Microlocal analysis for differential operators, (1994), London Mathematical Society Zbl0804.35001MR1269107
  9. H.J. Groenewold, On the principles of elementary quantum mechanics, Physica (Amsterdam) 12 (1946), 405-460 Zbl0060.45002MR18562
  10. B. Helffer, J. Sjöstrand, Équation de Schrödinger avec champ magnétique et équation de Harper, Springer Lecture Notes in Physics 345 (1989), 118-197 Zbl0699.35189MR1037319
  11. A.C. Hirshfeld, P. Henselder, Deformation quantization in the teaching of quantum mechanics, Amer. J. Physics 70 (2002), 537-547 Zbl1219.81170MR1897018
  12. V. Kathotia, Kontsevich's universal formula for deformation quantization and the Campbell-Baker-Haussdorf formula, I, Internat. J. Math. 11 (2000), 523-551 Zbl1110.53308MR1768172
  13. M. Kontsevich, Deformation quantization of Poisson manifolds I, Lett. Math. Phys. 66 (2003), 157-216 Zbl1058.53065MR2062626
  14. J. Loikkanen, C. Paufler, Yang-Mills action from minimally coupled bosons on 4 and on the 4D Moyal plane,, (2004) Zbl1076.58023
  15. J.E. Moya, Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc. 45 (1949), 99-124 Zbl0031.33601
  16. H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka, Strange phenomena related to ordering problems in quantizations, J. Lie Theory 13 (2003), 479-508 Zbl1046.53057MR2003156
  17. M. Polyak, Quantization of linear Poisson structures and degrees of maps, (2003) Zbl1056.53060
  18. N.J.A. Sloane (editor), The On-Line Encyclopedia of Integer Sequences Zbl1044.11108
  19. A. Voros, Asymptotic -expansions of stationary quantum states, Ann. Inst. H. Poincaré Sect. A (N.S.) 26 (1977), 343-403 MR456138
  20. H. Weyl, Gruppentheorie und Quantenmechanik, Z. Phys. 46 (1928), 1-46 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.