The symbol of a function of a pseudo-differential operator
- [1] University of California at Berkeley, Department of Mathematics, Berkeley CA 94720-3840 (USA)
Annales de l'institut Fourier (2005)
- Volume: 55, Issue: 7, page 2257-2284
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGracia-saz, Alfonso. "The symbol of a function of a pseudo-differential operator." Annales de l'institut Fourier 55.7 (2005): 2257-2284. <http://eudml.org/doc/116254>.
@article{Gracia2005,
abstract = {We give an explicit formula for the symbol of a function of an operator. Given a pseudo-differential operator $\widehat\{A\}$ on
$L^2(\{\mathbb \{R\}\}^\{N\})$ with symbol
$A \in \{\{\mathcal \{C\}\}^\{\infty \}(T^* \{\mathbb \{R\}\}^\{N\})\}$ and a smooth function $f$, we obtain the symbol of
$f(\widehat\{A\})$ in terms of $A$. As an application, Bohr-Sommerfeld quantization rules are explicitly calculated at order 4 in $\hbar $.},
affiliation = {University of California at Berkeley, Department of Mathematics, Berkeley CA 94720-3840 (USA)},
author = {Gracia-saz, Alfonso},
journal = {Annales de l'institut Fourier},
keywords = {Deformation quantization; Moyal product; Weyl quantization; Bohr-Sommerfeld; symbol; diagrammatic technique; deformation quantization; Moyal products; Bohr-Sommerfeld symbol; diagrammatic technique.},
language = {eng},
number = {7},
pages = {2257-2284},
publisher = {Association des Annales de l'Institut Fourier},
title = {The symbol of a function of a pseudo-differential operator},
url = {http://eudml.org/doc/116254},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Gracia-saz, Alfonso
TI - The symbol of a function of a pseudo-differential operator
JO - Annales de l'institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 7
SP - 2257
EP - 2284
AB - We give an explicit formula for the symbol of a function of an operator. Given a pseudo-differential operator $\widehat{A}$ on
$L^2({\mathbb {R}}^{N})$ with symbol
$A \in {{\mathcal {C}}^{\infty }(T^* {\mathbb {R}}^{N})}$ and a smooth function $f$, we obtain the symbol of
$f(\widehat{A})$ in terms of $A$. As an application, Bohr-Sommerfeld quantization rules are explicitly calculated at order 4 in $\hbar $.
LA - eng
KW - Deformation quantization; Moyal product; Weyl quantization; Bohr-Sommerfeld; symbol; diagrammatic technique; deformation quantization; Moyal products; Bohr-Sommerfeld symbol; diagrammatic technique.
UR - http://eudml.org/doc/116254
ER -
References
top- M. Andersson, J. Sjöstrand, Functional calculus for non-commuting operators with real spectra via an iterated Cauchy formula Zbl1070.47009
- P.N. Argyres, The Bohr-Sommerfeld quantization rule and the Weyl correspondence, Physics 2 (1965), 131-139
- F. Bayen, M. Flato, C. Fronsdal, D. Sternheimer A. Lichnerowicz, Deformation theory and quantization I-II, Ann. Phys. 111 (1978) Zbl0377.53025MR496158
- M. Cargo, A. Gracia- Saz, R.G. Littlejohn, M.W. Reinsch, P. de M. Rios, Quantum normal forms, Moyal star product and Bohr-Sommerfeld approximation, J. Phys. A, Math. and Gen. 38 (2005), 1977-2004 Zbl1073.81056MR2124376
- L. Charles, Berezin-Toeplitz operators, a semi-classical approach, Comm. Math. Phys. 239 (2003), 1-28 Zbl1059.47030MR1997113
- Y. Colin de Verdière, Bohr-Sommerfeld rules to all order, (2004) Zbl1080.81029
- E.B. Davies, Spectral theory and differential operators, 42 (1995), Cambridge University Press Zbl0893.47004MR1349825
- A. Grigis, J. Sjöstrand, Microlocal analysis for differential operators, (1994), London Mathematical Society Zbl0804.35001MR1269107
- H.J. Groenewold, On the principles of elementary quantum mechanics, Physica (Amsterdam) 12 (1946), 405-460 Zbl0060.45002MR18562
- B. Helffer, J. Sjöstrand, Équation de Schrödinger avec champ magnétique et équation de Harper, Springer Lecture Notes in Physics 345 (1989), 118-197 Zbl0699.35189MR1037319
- A.C. Hirshfeld, P. Henselder, Deformation quantization in the teaching of quantum mechanics, Amer. J. Physics 70 (2002), 537-547 Zbl1219.81170MR1897018
- V. Kathotia, Kontsevich's universal formula for deformation quantization and the Campbell-Baker-Haussdorf formula, I, Internat. J. Math. 11 (2000), 523-551 Zbl1110.53308MR1768172
- M. Kontsevich, Deformation quantization of Poisson manifolds I, Lett. Math. Phys. 66 (2003), 157-216 Zbl1058.53065MR2062626
- J. Loikkanen, C. Paufler, Yang-Mills action from minimally coupled bosons on and on the 4D Moyal plane,, (2004) Zbl1076.58023
- J.E. Moya, Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc. 45 (1949), 99-124 Zbl0031.33601
- H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka, Strange phenomena related to ordering problems in quantizations, J. Lie Theory 13 (2003), 479-508 Zbl1046.53057MR2003156
- M. Polyak, Quantization of linear Poisson structures and degrees of maps, (2003) Zbl1056.53060
- N.J.A. Sloane (editor), The On-Line Encyclopedia of Integer Sequences Zbl1044.11108
- A. Voros, Asymptotic -expansions of stationary quantum states, Ann. Inst. H. Poincaré Sect. A (N.S.) 26 (1977), 343-403 MR456138
- H. Weyl, Gruppentheorie und Quantenmechanik, Z. Phys. 46 (1928), 1-46
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.