Equivariant virtual Betti numbers

Goulwen Fichou[1]

  • [1] Université de Rennes 1 Institut Mathématiques de Rennes Campus de Beaulieu 35042 Rennes Cedex (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 1, page 1-27
  • ISSN: 0373-0956

Abstract

top
We define a generalised Euler characteristic for arc-symmetric sets endowed with a group action. It coincides with the Poincaré series in equivariant homology for compact nonsingular sets, but is different in general. We put emphasis on the particular case of / 2 , and give an application to the study of the singularities of Nash function germs via an analog of the motivic zeta function of Denef and Loeser.

How to cite

top

Fichou, Goulwen. "Equivariant virtual Betti numbers." Annales de l’institut Fourier 58.1 (2008): 1-27. <http://eudml.org/doc/10309>.

@article{Fichou2008,
abstract = {We define a generalised Euler characteristic for arc-symmetric sets endowed with a group action. It coincides with the Poincaré series in equivariant homology for compact nonsingular sets, but is different in general. We put emphasis on the particular case of $\mathbb\{Z\}/2\mathbb\{Z\}$, and give an application to the study of the singularities of Nash function germs via an analog of the motivic zeta function of Denef and Loeser.},
affiliation = {Université de Rennes 1 Institut Mathématiques de Rennes Campus de Beaulieu 35042 Rennes Cedex (France)},
author = {Fichou, Goulwen},
journal = {Annales de l’institut Fourier},
keywords = {equivariant homology; arc symmetric sets; motivic integration; Blow-Nash equivalence; blow-Nash equivalence},
language = {eng},
number = {1},
pages = {1-27},
publisher = {Association des Annales de l’institut Fourier},
title = {Equivariant virtual Betti numbers},
url = {http://eudml.org/doc/10309},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Fichou, Goulwen
TI - Equivariant virtual Betti numbers
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 1
SP - 1
EP - 27
AB - We define a generalised Euler characteristic for arc-symmetric sets endowed with a group action. It coincides with the Poincaré series in equivariant homology for compact nonsingular sets, but is different in general. We put emphasis on the particular case of $\mathbb{Z}/2\mathbb{Z}$, and give an application to the study of the singularities of Nash function germs via an analog of the motivic zeta function of Denef and Loeser.
LA - eng
KW - equivariant homology; arc symmetric sets; motivic integration; Blow-Nash equivalence; blow-Nash equivalence
UR - http://eudml.org/doc/10309
ER -

References

top
  1. D. Abramovich, K. Karu, K. Matsuki, J. Wlodarczyk, Torification and factorization of birational maps, J. Amer. Math. Soc. 15 (2002), 531-572 Zbl1032.14003MR1896232
  2. F. Bittner, The universal Euler characteristic for varieties of characteristic zero, Compositio Mathematica 140 (2004), 1011-1032 Zbl1086.14016MR2059227
  3. J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, (1998), Springer-Verlag, Berlin Zbl0912.14023MR1659509
  4. H. Cartan, Quotient d’un espace analytique par un groupe d’automorphismes, Algebraic geometry and topology (1957), 687-699, Princeton University Press, Princeton, New Jersey Zbl0084.07202
  5. J. Denef, F. Loeser, Geometry on arc spaces of algebraic varieties, European Congress of Math. 1 (2001), 325-348 Zbl1079.14003MR1905328
  6. D. Derval, Etude des classes de cohomologie algébrique des variétés algébriques réelles, (2001) 
  7. G. Fichou, Motivic invariants of Arc-Symmetric sets and Blow-Nash Equivalence, Compositio Math. 141 (2005), 655-688 Zbl1080.14070MR2135282
  8. G. Fichou, Zeta functions and Blow-Nash equivalence, Annales Polonici Math. 87 (2005), 111-126 Zbl1093.14007MR2208540
  9. G. Fichou, The corank and the index are blow-Nash invariants, Kodai Math. J. 29 (2006), 31-40 Zbl1099.14002MR2222164
  10. A. Grothendieck, Sur quelques points d’algèbre homologique, Tôhoku Math. J. 9 (1970), 143-162 Zbl0118.26104
  11. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math. 79 (1964), 109-326 Zbl0122.38603MR199184
  12. J. Huisman, Real quotient singularities and nonsingular real algebraic curves in the boundary of the moduli space, Compositio Math. 118 (1999), 43-60 Zbl0949.14017MR1705976
  13. S. Koike, A. Parusiński, Motivic-type invariants of blow-analytic equivalence, Ann. Inst. Fourier 53 (2003), 2061-2104 Zbl1062.14006MR2044168
  14. M. Kontsevich, Lecture at Orsay, (1995) 
  15. T.-C. Kuo, On classification of real singularities, Invent. Math. 82 (1985), 257-262 Zbl0587.32018MR809714
  16. K. Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 282 (1988), 445-462 Zbl0686.14027MR967023
  17. C. McCrory, A. Parusiński, Virtual Betti numbers of real algebraic varieties, C. R. Acad. Sci. Paris 336 (2003), 763-768 Zbl1073.14071MR1989277
  18. J. Van Hamel, Algebraic cycles and topology of real algebraic varieties, (1997), CWI Tract 129, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam Zbl0986.14042MR1824786

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.