Equivariant virtual Betti numbers
- [1] Université de Rennes 1 Institut Mathématiques de Rennes Campus de Beaulieu 35042 Rennes Cedex (France)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 1, page 1-27
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFichou, Goulwen. "Equivariant virtual Betti numbers." Annales de l’institut Fourier 58.1 (2008): 1-27. <http://eudml.org/doc/10309>.
@article{Fichou2008,
abstract = {We define a generalised Euler characteristic for arc-symmetric sets endowed with a group action. It coincides with the Poincaré series in equivariant homology for compact nonsingular sets, but is different in general. We put emphasis on the particular case of $\mathbb\{Z\}/2\mathbb\{Z\}$, and give an application to the study of the singularities of Nash function germs via an analog of the motivic zeta function of Denef and Loeser.},
affiliation = {Université de Rennes 1 Institut Mathématiques de Rennes Campus de Beaulieu 35042 Rennes Cedex (France)},
author = {Fichou, Goulwen},
journal = {Annales de l’institut Fourier},
keywords = {equivariant homology; arc symmetric sets; motivic integration; Blow-Nash equivalence; blow-Nash equivalence},
language = {eng},
number = {1},
pages = {1-27},
publisher = {Association des Annales de l’institut Fourier},
title = {Equivariant virtual Betti numbers},
url = {http://eudml.org/doc/10309},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Fichou, Goulwen
TI - Equivariant virtual Betti numbers
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 1
SP - 1
EP - 27
AB - We define a generalised Euler characteristic for arc-symmetric sets endowed with a group action. It coincides with the Poincaré series in equivariant homology for compact nonsingular sets, but is different in general. We put emphasis on the particular case of $\mathbb{Z}/2\mathbb{Z}$, and give an application to the study of the singularities of Nash function germs via an analog of the motivic zeta function of Denef and Loeser.
LA - eng
KW - equivariant homology; arc symmetric sets; motivic integration; Blow-Nash equivalence; blow-Nash equivalence
UR - http://eudml.org/doc/10309
ER -
References
top- D. Abramovich, K. Karu, K. Matsuki, J. Wlodarczyk, Torification and factorization of birational maps, J. Amer. Math. Soc. 15 (2002), 531-572 Zbl1032.14003MR1896232
- F. Bittner, The universal Euler characteristic for varieties of characteristic zero, Compositio Mathematica 140 (2004), 1011-1032 Zbl1086.14016MR2059227
- J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, (1998), Springer-Verlag, Berlin Zbl0912.14023MR1659509
- H. Cartan, Quotient d’un espace analytique par un groupe d’automorphismes, Algebraic geometry and topology (1957), 687-699, Princeton University Press, Princeton, New Jersey Zbl0084.07202
- J. Denef, F. Loeser, Geometry on arc spaces of algebraic varieties, European Congress of Math. 1 (2001), 325-348 Zbl1079.14003MR1905328
- D. Derval, Etude des classes de cohomologie algébrique des variétés algébriques réelles, (2001)
- G. Fichou, Motivic invariants of Arc-Symmetric sets and Blow-Nash Equivalence, Compositio Math. 141 (2005), 655-688 Zbl1080.14070MR2135282
- G. Fichou, Zeta functions and Blow-Nash equivalence, Annales Polonici Math. 87 (2005), 111-126 Zbl1093.14007MR2208540
- G. Fichou, The corank and the index are blow-Nash invariants, Kodai Math. J. 29 (2006), 31-40 Zbl1099.14002MR2222164
- A. Grothendieck, Sur quelques points d’algèbre homologique, Tôhoku Math. J. 9 (1970), 143-162 Zbl0118.26104
- H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math. 79 (1964), 109-326 Zbl0122.38603MR199184
- J. Huisman, Real quotient singularities and nonsingular real algebraic curves in the boundary of the moduli space, Compositio Math. 118 (1999), 43-60 Zbl0949.14017MR1705976
- S. Koike, A. Parusiński, Motivic-type invariants of blow-analytic equivalence, Ann. Inst. Fourier 53 (2003), 2061-2104 Zbl1062.14006MR2044168
- M. Kontsevich, Lecture at Orsay, (1995)
- T.-C. Kuo, On classification of real singularities, Invent. Math. 82 (1985), 257-262 Zbl0587.32018MR809714
- K. Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 282 (1988), 445-462 Zbl0686.14027MR967023
- C. McCrory, A. Parusiński, Virtual Betti numbers of real algebraic varieties, C. R. Acad. Sci. Paris 336 (2003), 763-768 Zbl1073.14071MR1989277
- J. Van Hamel, Algebraic cycles and topology of real algebraic varieties, (1997), CWI Tract 129, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam Zbl0986.14042MR1824786
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.