Motivic-type invariants of blow-analytic equivalence
Satoshi Koike[1]; Adam Parusiński[2]
- [1] Hyogo University of Teacher Education, Department of Mathematics, 942-1 Shimokume, Kato, Yashiro, Hyogo 673-1494 (Japon)
- [2] Université d'Angers, Département de Mathématiques, 2 Bd Lavoisier, 49045 Angers Cedex (France)
Annales de l'Institut Fourier (2003)
- Volume: 53, Issue: 7, page 2061-2104
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKoike, Satoshi, and Parusiński, Adam. "Motivic-type invariants of blow-analytic equivalence." Annales de l'Institut Fourier 53.7 (2003): 2061-2104. <http://eudml.org/doc/116094>.
@article{Koike2003,
abstract = {To a given analytic function germ $f:(\{\mathbb \{R\}\}^d,0) \rightarrow (\{\mathbb \{R\}\},0)$, we associate zeta
functions $Z_\{f,+\}$, $Z_\{f,-\} \in \{\mathbb \{Z\}\} [[T]]$, defined analogously to the motivic
zeta functions of Denef and Loeser. We show that our zeta functions are rational and that
they are invariants of the blow-analytic equivalence in the sense of Kuo. Then we use
them together with the Fukui invariant to classify the blow-analytic equivalence classes
of Brieskorn polynomials of two variables. Except special series of singularities our
method classifies as well the blow-analytic equivalence classes of Brieskorn polynomials
of three variables.},
affiliation = {Hyogo University of Teacher Education, Department of Mathematics, 942-1 Shimokume, Kato, Yashiro, Hyogo 673-1494 (Japon); Université d'Angers, Département de Mathématiques, 2 Bd Lavoisier, 49045 Angers Cedex (France)},
author = {Koike, Satoshi, Parusiński, Adam},
journal = {Annales de l'Institut Fourier},
keywords = {blow-analytic equivalence; motivic integration; zeta functions; Thom-Sebastiani formulae},
language = {eng},
number = {7},
pages = {2061-2104},
publisher = {Association des Annales de l'Institut Fourier},
title = {Motivic-type invariants of blow-analytic equivalence},
url = {http://eudml.org/doc/116094},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Koike, Satoshi
AU - Parusiński, Adam
TI - Motivic-type invariants of blow-analytic equivalence
JO - Annales de l'Institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 7
SP - 2061
EP - 2104
AB - To a given analytic function germ $f:({\mathbb {R}}^d,0) \rightarrow ({\mathbb {R}},0)$, we associate zeta
functions $Z_{f,+}$, $Z_{f,-} \in {\mathbb {Z}} [[T]]$, defined analogously to the motivic
zeta functions of Denef and Loeser. We show that our zeta functions are rational and that
they are invariants of the blow-analytic equivalence in the sense of Kuo. Then we use
them together with the Fukui invariant to classify the blow-analytic equivalence classes
of Brieskorn polynomials of two variables. Except special series of singularities our
method classifies as well the blow-analytic equivalence classes of Brieskorn polynomials
of three variables.
LA - eng
KW - blow-analytic equivalence; motivic integration; zeta functions; Thom-Sebastiani formulae
UR - http://eudml.org/doc/116094
ER -
References
top- O.M. Abderrahmane Yacoub, Polyèdre de Newton et trivialité en famille, J. Math. Soc. Japan 54 (2002), 513-550 Zbl1031.58024MR1900955
- E. Bierstone, P.D. Milman, Arc-analytic functions, Invent. Math. 101 (1990), 411-424 Zbl0723.32005MR1062969
- E. Bierstone, P.D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), 207-302 Zbl0896.14006MR1440306
- J. Damon, T. Gaffney, Topological triviality of deformations of functions and Newton filtrations, Invent. Math. 72 (1983), 335-358 Zbl0519.58021MR704395
- J. Denef, F. Loeser, Motivic Igusa zeta functions, J. Alg. Geom. 7 (1998), 505-537 Zbl0943.14010MR1618144
- J. Denef, F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), 201-232 Zbl0928.14004MR1664700
- J. Denef, F. Loeser, Motivic exponential integrals and a motivic Thom-Sebastiani Theorem, Duke Math. J. 99 (1999), 289-309 Zbl0966.14015MR1708026
- J. Denef, F. Loeser, Geometry of arc spaces of algebraic varieties, European Congress of Math. (Barcelona, July 10-14, 2000) Vol. 1 (2001), 327-348 Zbl1079.14003
- J. Denef, F. Loeser, Lefschetz numbers of iterates of the monodromy and truncated arcs, Topology 41 (2002), 1031-1040 Zbl1054.14003MR1923998
- T. Fukui, E. Yoshinaga, The modified analytic trivialization of family of real analytic functions, Invent. Math. 82 (1985), 467-477 Zbl0559.58005MR811547
- T. Fukui, Seeking invariants for blow-analytic equivalence, Comp. Math. 105 (1997), 95-107 Zbl0873.32008MR1436747
- T. Fukui, S. Koike, T.-C. Kuo, Blow-analytic equisingularities, properties, problems and progress, Real Analytic and Algebraic Singularities, 381 (1998), 8-29 Zbl0954.26012
- T. Fukui, L. Paunescu, Modified analytic trivialization for weighted homogeneous function-germs, J. Math. Soc. Japan 52 (2000), 433-446 Zbl0964.32023MR1742795
- J.-P. Henry, A. Parusiński, Existence of Moduli for bi-Lipschitz equivalence of analytic functions, Comp. Math. 136 (2003), 217-235 Zbl1026.32055MR1967391
- J.-P. Henry, A. Parusiński, Invariants of bi-Lipschitz equivalence of real analytic functions Zbl1059.32006MR2104338
- H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II, Ann. of Math. 79 (1964), 109-302 Zbl0122.38603MR199184
- S. Izumi, S. Koike, T.-C. Kuo, Computations and Stability of the Fukui Invariant, Comp. Math. 130 (2002), 49-73 Zbl1007.58023MR1883691
- M. Kontsevich, (1995)
- W. Kucharz, Examples in the theory of sufficiency of jets, Proc. Amer. Math. Soc. 96 (1986), 163-166 Zbl0594.58008MR813830
- N. Kuiper, -equivalence of functions near isolated critical points, Symp. Infinite Dimensional Topology, Baton Rouge, 1967 69 (1972), 199-218, Princeton Univ. Press Zbl0236.58001
- T.-C. Kuo, On -sufficiency of jets of potential functions, Topology 8 (1969), 167-171 Zbl0183.04601MR238338
- T.-C. Kuo, The modified analytic trivialization of singularities, J. Math. Soc. Japan 32 (1980), 605-614 Zbl0509.58007MR589100
- T.-C. Kuo, On classification of real singularities, Invent. Math. 82 (1985), 257-262 Zbl0587.32018MR809714
- K. Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 282 (1988), 445-462 Zbl0686.14027MR967023
- K. Kurdyka, Injective endomorphisms of real algebraic sets are surjective, Math. Ann. 282 (1998), 1-14 Zbl0933.14036MR1666793
- LÊ Dung Tráng, Topologie des singularités des hypersurfaces complexes, Singularités à Cargèse 7 & 8 (1973), 171-182 Zbl0331.32009
- S. Lojasiewicz, Ensembles semi-analytiques, (1965), I.H.E.S. Zbl0241.32005
- E. Looijenga, Motivic Measures, exposé 874 (mars 2000) Zbl0996.14011
- C. McCrory, A. Parusiński, Complex monodromy and the topology of real algebraic sets, Comp. Math. 106 (1997), 211-233 Zbl0949.14037MR1457340
- J. Milnor, P. Orlik, Isolated singularities defined by weighted homogeneous polynomials, Topology 9 (1970), 385-393 Zbl0204.56503MR293680
- T. Nishimura, Topological invariance of weights for weighted homogeneous singularities, Kodai Math. J. 9 (1986), 188-190 Zbl0612.32001MR842866
- R. Quarez, Espace des germes d'arcs réels et série de Poincaré d'un ensemble semi-algébrique, Ann. Inst. Fourier 51 (2001), 43-67 Zbl0967.14037MR1821067
- O. Saeki, Topological invariance of weights for weighted homogeneous isolated singularities in , Proc. Amer. Math. Soc. 103 (1988), 995-999 Zbl0656.32009MR947679
- B. Teissier, Cycles évanescents, sections planes, et conditions de Whitney, Singularités à Cargèse 7 & 8 (1973), 285-362 Zbl0295.14003
- W. Veys, The topological zeta function associated to a function on a normal surface germ, Topology 38 (1999), 439-456 Zbl0947.32020MR1660317
- S.-T. Yau, Topological types and multiplicity of isolated quasihomogeneous surface singularities, Bull. Amer. Math. Soc. 19 (1988), 447-454 Zbl0659.32013MR935021
- E. Yoshinaga, M. Suzuki, Topological types of quasihomogeneous singularities in , Topology 18 (1979), 113-116 Zbl0428.32004MR544152
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.