Motivic-type invariants of blow-analytic equivalence

Satoshi Koike[1]; Adam Parusiński[2]

  • [1] Hyogo University of Teacher Education, Department of Mathematics, 942-1 Shimokume, Kato, Yashiro, Hyogo 673-1494 (Japon)
  • [2] Université d'Angers, Département de Mathématiques, 2 Bd Lavoisier, 49045 Angers Cedex (France)

Annales de l'Institut Fourier (2003)

  • Volume: 53, Issue: 7, page 2061-2104
  • ISSN: 0373-0956

Abstract

top
To a given analytic function germ f : ( d , 0 ) ( , 0 ) , we associate zeta functions Z f , + , Z f , - [ [ T ] ] , defined analogously to the motivic zeta functions of Denef and Loeser. We show that our zeta functions are rational and that they are invariants of the blow-analytic equivalence in the sense of Kuo. Then we use them together with the Fukui invariant to classify the blow-analytic equivalence classes of Brieskorn polynomials of two variables. Except special series of singularities our method classifies as well the blow-analytic equivalence classes of Brieskorn polynomials of three variables.

How to cite

top

Koike, Satoshi, and Parusiński, Adam. "Motivic-type invariants of blow-analytic equivalence." Annales de l'Institut Fourier 53.7 (2003): 2061-2104. <http://eudml.org/doc/116094>.

@article{Koike2003,
abstract = {To a given analytic function germ $f:(\{\mathbb \{R\}\}^d,0) \rightarrow (\{\mathbb \{R\}\},0)$, we associate zeta functions $Z_\{f,+\}$, $Z_\{f,-\} \in \{\mathbb \{Z\}\} [[T]]$, defined analogously to the motivic zeta functions of Denef and Loeser. We show that our zeta functions are rational and that they are invariants of the blow-analytic equivalence in the sense of Kuo. Then we use them together with the Fukui invariant to classify the blow-analytic equivalence classes of Brieskorn polynomials of two variables. Except special series of singularities our method classifies as well the blow-analytic equivalence classes of Brieskorn polynomials of three variables.},
affiliation = {Hyogo University of Teacher Education, Department of Mathematics, 942-1 Shimokume, Kato, Yashiro, Hyogo 673-1494 (Japon); Université d'Angers, Département de Mathématiques, 2 Bd Lavoisier, 49045 Angers Cedex (France)},
author = {Koike, Satoshi, Parusiński, Adam},
journal = {Annales de l'Institut Fourier},
keywords = {blow-analytic equivalence; motivic integration; zeta functions; Thom-Sebastiani formulae},
language = {eng},
number = {7},
pages = {2061-2104},
publisher = {Association des Annales de l'Institut Fourier},
title = {Motivic-type invariants of blow-analytic equivalence},
url = {http://eudml.org/doc/116094},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Koike, Satoshi
AU - Parusiński, Adam
TI - Motivic-type invariants of blow-analytic equivalence
JO - Annales de l'Institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 7
SP - 2061
EP - 2104
AB - To a given analytic function germ $f:({\mathbb {R}}^d,0) \rightarrow ({\mathbb {R}},0)$, we associate zeta functions $Z_{f,+}$, $Z_{f,-} \in {\mathbb {Z}} [[T]]$, defined analogously to the motivic zeta functions of Denef and Loeser. We show that our zeta functions are rational and that they are invariants of the blow-analytic equivalence in the sense of Kuo. Then we use them together with the Fukui invariant to classify the blow-analytic equivalence classes of Brieskorn polynomials of two variables. Except special series of singularities our method classifies as well the blow-analytic equivalence classes of Brieskorn polynomials of three variables.
LA - eng
KW - blow-analytic equivalence; motivic integration; zeta functions; Thom-Sebastiani formulae
UR - http://eudml.org/doc/116094
ER -

References

top
  1. O.M. Abderrahmane Yacoub, Polyèdre de Newton et trivialité en famille, J. Math. Soc. Japan 54 (2002), 513-550 Zbl1031.58024MR1900955
  2. E. Bierstone, P.D. Milman, Arc-analytic functions, Invent. Math. 101 (1990), 411-424 Zbl0723.32005MR1062969
  3. E. Bierstone, P.D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), 207-302 Zbl0896.14006MR1440306
  4. J. Damon, T. Gaffney, Topological triviality of deformations of functions and Newton filtrations, Invent. Math. 72 (1983), 335-358 Zbl0519.58021MR704395
  5. J. Denef, F. Loeser, Motivic Igusa zeta functions, J. Alg. Geom. 7 (1998), 505-537 Zbl0943.14010MR1618144
  6. J. Denef, F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), 201-232 Zbl0928.14004MR1664700
  7. J. Denef, F. Loeser, Motivic exponential integrals and a motivic Thom-Sebastiani Theorem, Duke Math. J. 99 (1999), 289-309 Zbl0966.14015MR1708026
  8. J. Denef, F. Loeser, Geometry of arc spaces of algebraic varieties, European Congress of Math. (Barcelona, July 10-14, 2000) Vol. 1 (2001), 327-348 Zbl1079.14003
  9. J. Denef, F. Loeser, Lefschetz numbers of iterates of the monodromy and truncated arcs, Topology 41 (2002), 1031-1040 Zbl1054.14003MR1923998
  10. T. Fukui, E. Yoshinaga, The modified analytic trivialization of family of real analytic functions, Invent. Math. 82 (1985), 467-477 Zbl0559.58005MR811547
  11. T. Fukui, Seeking invariants for blow-analytic equivalence, Comp. Math. 105 (1997), 95-107 Zbl0873.32008MR1436747
  12. T. Fukui, S. Koike, T.-C. Kuo, Blow-analytic equisingularities, properties, problems and progress, Real Analytic and Algebraic Singularities, 381 (1998), 8-29 Zbl0954.26012
  13. T. Fukui, L. Paunescu, Modified analytic trivialization for weighted homogeneous function-germs, J. Math. Soc. Japan 52 (2000), 433-446 Zbl0964.32023MR1742795
  14. J.-P. Henry, A. Parusiński, Existence of Moduli for bi-Lipschitz equivalence of analytic functions, Comp. Math. 136 (2003), 217-235 Zbl1026.32055MR1967391
  15. J.-P. Henry, A. Parusiński, Invariants of bi-Lipschitz equivalence of real analytic functions Zbl1059.32006MR2104338
  16. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II, Ann. of Math. 79 (1964), 109-302 Zbl0122.38603MR199184
  17. S. Izumi, S. Koike, T.-C. Kuo, Computations and Stability of the Fukui Invariant, Comp. Math. 130 (2002), 49-73 Zbl1007.58023MR1883691
  18. M. Kontsevich, (1995) 
  19. W. Kucharz, Examples in the theory of sufficiency of jets, Proc. Amer. Math. Soc. 96 (1986), 163-166 Zbl0594.58008MR813830
  20. N. Kuiper, C 1 -equivalence of functions near isolated critical points, Symp. Infinite Dimensional Topology, Baton Rouge, 1967 69 (1972), 199-218, Princeton Univ. Press Zbl0236.58001
  21. T.-C. Kuo, On C 0 -sufficiency of jets of potential functions, Topology 8 (1969), 167-171 Zbl0183.04601MR238338
  22. T.-C. Kuo, The modified analytic trivialization of singularities, J. Math. Soc. Japan 32 (1980), 605-614 Zbl0509.58007MR589100
  23. T.-C. Kuo, On classification of real singularities, Invent. Math. 82 (1985), 257-262 Zbl0587.32018MR809714
  24. K. Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 282 (1988), 445-462 Zbl0686.14027MR967023
  25. K. Kurdyka, Injective endomorphisms of real algebraic sets are surjective, Math. Ann. 282 (1998), 1-14 Zbl0933.14036MR1666793
  26. LÊ Dung Tráng, Topologie des singularités des hypersurfaces complexes, Singularités à Cargèse 7 & 8 (1973), 171-182 Zbl0331.32009
  27. S. Lojasiewicz, Ensembles semi-analytiques, (1965), I.H.E.S. Zbl0241.32005
  28. E. Looijenga, Motivic Measures, exposé 874 (mars 2000) Zbl0996.14011
  29. C. McCrory, A. Parusiński, Complex monodromy and the topology of real algebraic sets, Comp. Math. 106 (1997), 211-233 Zbl0949.14037MR1457340
  30. J. Milnor, P. Orlik, Isolated singularities defined by weighted homogeneous polynomials, Topology 9 (1970), 385-393 Zbl0204.56503MR293680
  31. T. Nishimura, Topological invariance of weights for weighted homogeneous singularities, Kodai Math. J. 9 (1986), 188-190 Zbl0612.32001MR842866
  32. R. Quarez, Espace des germes d'arcs réels et série de Poincaré d'un ensemble semi-algébrique, Ann. Inst. Fourier 51 (2001), 43-67 Zbl0967.14037MR1821067
  33. O. Saeki, Topological invariance of weights for weighted homogeneous isolated singularities in 3 , Proc. Amer. Math. Soc. 103 (1988), 995-999 Zbl0656.32009MR947679
  34. B. Teissier, Cycles évanescents, sections planes, et conditions de Whitney, Singularités à Cargèse 7 & 8 (1973), 285-362 Zbl0295.14003
  35. W. Veys, The topological zeta function associated to a function on a normal surface germ, Topology 38 (1999), 439-456 Zbl0947.32020MR1660317
  36. S.-T. Yau, Topological types and multiplicity of isolated quasihomogeneous surface singularities, Bull. Amer. Math. Soc. 19 (1988), 447-454 Zbl0659.32013MR935021
  37. E. Yoshinaga, M. Suzuki, Topological types of quasihomogeneous singularities in 2 , Topology 18 (1979), 113-116 Zbl0428.32004MR544152

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.