A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion
- [1] University of Tokyo Graduate School of Mathematical Sciences 3-8-1 Komaba Meguro Tokyo 153-8914 (Japan)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 1, page 337-362
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topYamaguchi, Yoshikazu. "A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion." Annales de l’institut Fourier 58.1 (2008): 337-362. <http://eudml.org/doc/10314>.
@article{Yamaguchi2008,
abstract = {We show a relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion for a $\lambda $-regular $\{\rm SU\}(2)$ or $\{\rm SL\}(2, \mathbb\{C\})$-representation of a knot group. Then we give a method to calculate the non-acyclic Reidemeister torsion of a knot exterior. We calculate a new example and investigate the behavior of the non-acyclic Reidemeister torsion associated to a $2$-bridge knot and $\{\rm SU\}(2)$-representations of its knot group.},
affiliation = {University of Tokyo Graduate School of Mathematical Sciences 3-8-1 Komaba Meguro Tokyo 153-8914 (Japan)},
author = {Yamaguchi, Yoshikazu},
journal = {Annales de l’institut Fourier},
keywords = {Reidemeister torsion; twisted Alexander invariant; knots; representation spaces},
language = {eng},
number = {1},
pages = {337-362},
publisher = {Association des Annales de l’institut Fourier},
title = {A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion},
url = {http://eudml.org/doc/10314},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Yamaguchi, Yoshikazu
TI - A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 1
SP - 337
EP - 362
AB - We show a relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion for a $\lambda $-regular ${\rm SU}(2)$ or ${\rm SL}(2, \mathbb{C})$-representation of a knot group. Then we give a method to calculate the non-acyclic Reidemeister torsion of a knot exterior. We calculate a new example and investigate the behavior of the non-acyclic Reidemeister torsion associated to a $2$-bridge knot and ${\rm SU}(2)$-representations of its knot group.
LA - eng
KW - Reidemeister torsion; twisted Alexander invariant; knots; representation spaces
UR - http://eudml.org/doc/10314
ER -
References
top- K. S. Brown, Cohomology of Groups, (1994), Springer-Verlag, New York Zbl0584.20036MR1324339
- G. Burde, -representation spaces for two-bridge knot groups, Math. Ann. 288 (1990), 103-119 Zbl0694.57003MR1070927
- G. Burde, H. Zieschang, Knots Second edition, (2003), Walter de Gruyter Zbl1009.57003MR1959408
- J. Dubois, Non abelian Reidemeister torsion and volume form on the -representation space of knot groups, Ann. Inst. Fourier 55 (2005), 1685-1734 Zbl1077.57009MR2172277
- J. Dubois, Non abelian twisted Reidemeister torsion for fibered knots, Canad. Math. Bull. 49 (2006), 55-71 Zbl1101.57010MR2198719
- J. Dubois, R. Kashaev, On the asymptotic expansion of the colored Jones polynomial for torus knots Zbl1129.57015
- M. Heusener, E. Klassen, Deformations of dihedral representations, Proc. Amer. Math. Soc. 125 (1997), 3039-3047 Zbl0883.57001MR1443155
- P. Kirk, E. Klassen, Chern-Simons invariants of -manifolds and representation spaces of knot groups, Math. Ann. 287 (1990), 343-367 Zbl0681.57006MR1054574
- P. Kirk, C. Livingston, Twisted Alexander Invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology 38 (1999), 635-661 Zbl0928.57005MR1670420
- T. Kitano, Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math. 174 (1996), 431-442 Zbl0863.57001MR1405595
- E. Klassen, Representations of knot groups in , Trans. Amer. Math. Soc. 326 (1991), 795-828 Zbl0743.57003MR1008696
- J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426 Zbl0147.23104MR196736
- J. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds (1968), 115-133, Prindle Weber & Schmidt Boston, Mass., Michigan State Univ. 1967 Zbl0179.52302MR242163
- J. W. Morgan, P. B. Shalen, Valuations, trees, and degenerations of hyperbolic structures, Ann. of Math. 120 (1984), 401-476 Zbl0583.57005MR769158
- Joan Porti, Torsion de Reidemeister pour les variétés hyperboliques, Mem. Amer. Math. Soc. 128 (1997) Zbl0881.57020MR1396960
- R. Riley, Nonabelian representations of -bridge knot groups, Quart. J. Math. Oxford Ser. 35 (1984), 191-208 Zbl0549.57005MR745421
- D. Rolfsen, Knots and links, (1990), Publish or Perish Inc., Houston, TX Zbl0854.57002MR1277811
- E. H. Spanier, Algebraic Topology, (1981), Springer-Verlag, New York-Berlin Zbl0810.55001MR666554
- V. Turaev, Introduction to combinatorial torsions, (2001), Birkhäuser Verlag, Basel Zbl0970.57001MR1809561
- V. Turaev, Torsions of -dimensional manifolds, (2002), Birkhäuser Verlag, Basel Zbl1012.57002MR1958479
- M. Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), 241-256 Zbl0822.57006MR1273784
- Y. Yamaguchi, Limit values of the non-acyclic Reidemeister torsion for knots Zbl1144.57021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.