A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion

Yoshikazu Yamaguchi[1]

  • [1] University of Tokyo Graduate School of Mathematical Sciences 3-8-1 Komaba Meguro Tokyo 153-8914 (Japan)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 1, page 337-362
  • ISSN: 0373-0956

Abstract

top
We show a relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion for a λ -regular SU ( 2 ) or SL ( 2 , ) -representation of a knot group. Then we give a method to calculate the non-acyclic Reidemeister torsion of a knot exterior. We calculate a new example and investigate the behavior of the non-acyclic Reidemeister torsion associated to a 2 -bridge knot and SU ( 2 ) -representations of its knot group.

How to cite

top

Yamaguchi, Yoshikazu. "A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion." Annales de l’institut Fourier 58.1 (2008): 337-362. <http://eudml.org/doc/10314>.

@article{Yamaguchi2008,
abstract = {We show a relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion for a $\lambda $-regular $\{\rm SU\}(2)$ or $\{\rm SL\}(2, \mathbb\{C\})$-representation of a knot group. Then we give a method to calculate the non-acyclic Reidemeister torsion of a knot exterior. We calculate a new example and investigate the behavior of the non-acyclic Reidemeister torsion associated to a $2$-bridge knot and $\{\rm SU\}(2)$-representations of its knot group.},
affiliation = {University of Tokyo Graduate School of Mathematical Sciences 3-8-1 Komaba Meguro Tokyo 153-8914 (Japan)},
author = {Yamaguchi, Yoshikazu},
journal = {Annales de l’institut Fourier},
keywords = {Reidemeister torsion; twisted Alexander invariant; knots; representation spaces},
language = {eng},
number = {1},
pages = {337-362},
publisher = {Association des Annales de l’institut Fourier},
title = {A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion},
url = {http://eudml.org/doc/10314},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Yamaguchi, Yoshikazu
TI - A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 1
SP - 337
EP - 362
AB - We show a relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion for a $\lambda $-regular ${\rm SU}(2)$ or ${\rm SL}(2, \mathbb{C})$-representation of a knot group. Then we give a method to calculate the non-acyclic Reidemeister torsion of a knot exterior. We calculate a new example and investigate the behavior of the non-acyclic Reidemeister torsion associated to a $2$-bridge knot and ${\rm SU}(2)$-representations of its knot group.
LA - eng
KW - Reidemeister torsion; twisted Alexander invariant; knots; representation spaces
UR - http://eudml.org/doc/10314
ER -

References

top
  1. K. S. Brown, Cohomology of Groups, (1994), Springer-Verlag, New York Zbl0584.20036MR1324339
  2. G. Burde, SU ( 2 ) -representation spaces for two-bridge knot groups, Math. Ann. 288 (1990), 103-119 Zbl0694.57003MR1070927
  3. G. Burde, H. Zieschang, Knots ( Second edition ) , (2003), Walter de Gruyter Zbl1009.57003MR1959408
  4. J. Dubois, Non abelian Reidemeister torsion and volume form on the SU ( 2 ) -representation space of knot groups, Ann. Inst. Fourier 55 (2005), 1685-1734 Zbl1077.57009MR2172277
  5. J. Dubois, Non abelian twisted Reidemeister torsion for fibered knots, Canad. Math. Bull. 49 (2006), 55-71 Zbl1101.57010MR2198719
  6. J. Dubois, R. Kashaev, On the asymptotic expansion of the colored Jones polynomial for torus knots Zbl1129.57015
  7. M. Heusener, E. Klassen, Deformations of dihedral representations, Proc. Amer. Math. Soc. 125 (1997), 3039-3047 Zbl0883.57001MR1443155
  8. P. Kirk, E. Klassen, Chern-Simons invariants of 3 -manifolds and representation spaces of knot groups, Math. Ann. 287 (1990), 343-367 Zbl0681.57006MR1054574
  9. P. Kirk, C. Livingston, Twisted Alexander Invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology 38 (1999), 635-661 Zbl0928.57005MR1670420
  10. T. Kitano, Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math. 174 (1996), 431-442 Zbl0863.57001MR1405595
  11. E. Klassen, Representations of knot groups in SU ( 2 ) , Trans. Amer. Math. Soc. 326 (1991), 795-828 Zbl0743.57003MR1008696
  12. J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426 Zbl0147.23104MR196736
  13. J. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds (1968), 115-133, Prindle Weber & Schmidt Boston, Mass., Michigan State Univ. 1967 Zbl0179.52302MR242163
  14. J. W. Morgan, P. B. Shalen, Valuations, trees, and degenerations of hyperbolic structures, Ann. of Math. 120 (1984), 401-476 Zbl0583.57005MR769158
  15. Joan Porti, Torsion de Reidemeister pour les variétés hyperboliques, Mem. Amer. Math. Soc. 128 (1997) Zbl0881.57020MR1396960
  16. R. Riley, Nonabelian representations of 2 -bridge knot groups, Quart. J. Math. Oxford Ser. 35 (1984), 191-208 Zbl0549.57005MR745421
  17. D. Rolfsen, Knots and links, (1990), Publish or Perish Inc., Houston, TX Zbl0854.57002MR1277811
  18. E. H. Spanier, Algebraic Topology, (1981), Springer-Verlag, New York-Berlin Zbl0810.55001MR666554
  19. V. Turaev, Introduction to combinatorial torsions, (2001), Birkhäuser Verlag, Basel Zbl0970.57001MR1809561
  20. V. Turaev, Torsions of 3 -dimensional manifolds, (2002), Birkhäuser Verlag, Basel Zbl1012.57002MR1958479
  21. M. Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), 241-256 Zbl0822.57006MR1273784
  22. Y. Yamaguchi, Limit values of the non-acyclic Reidemeister torsion for knots Zbl1144.57021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.