Non abelian Reidemeister torsion and volume form on the SU(2)-representation space of knot groups

Jérôme Dubois[1]

  • [1] Université de Genève, section de mathématiques, CP64, 2-4 rue du lièvre, 1211 Genève 4 (Suisse), Université Blaise Pascal, laboratoire de mathématiques, avenue des Landais, 63177 Aubière cedex (France)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 5, page 1685-1734
  • ISSN: 0373-0956

Abstract

top
For a knot K in the 3-sphere and a regular representation of its group G K into SU(2) we construct a non abelian Reidemeister torsion form on the first twisted cohomology group of the knot exterior. This non abelian Reidemeister torsion form provides a volume form on the SU(2)-representation space of G K . In another way, we construct using Casson’s original construction a natural volume form on the SU(2)-representation space of G K . Next, we compare these two apparently different points of view on the representation variety and finally prove that they produce the same topological knot.

How to cite

top

Dubois, Jérôme. "Non abelian Reidemeister torsion and volume form on the SU(2)-representation space of knot groups." Annales de l’institut Fourier 55.5 (2005): 1685-1734. <http://eudml.org/doc/116229>.

@article{Dubois2005,
abstract = {For a knot $K$ in the 3-sphere and a regular representation of its group $G_K$ into SU(2) we construct a non abelian Reidemeister torsion form on the first twisted cohomology group of the knot exterior. This non abelian Reidemeister torsion form provides a volume form on the SU(2)-representation space of $G_K$. In another way, we construct using Casson’s original construction a natural volume form on the SU(2)-representation space of $G_K$. Next, we compare these two apparently different points of view on the representation variety and finally prove that they produce the same topological knot.},
affiliation = {Université de Genève, section de mathématiques, CP64, 2-4 rue du lièvre, 1211 Genève 4 (Suisse), Université Blaise Pascal, laboratoire de mathématiques, avenue des Landais, 63177 Aubière cedex (France)},
author = {Dubois, Jérôme},
journal = {Annales de l’institut Fourier},
keywords = {Knot groups; representation space; volume form; Reidemeister torsion; Casson invariant; adjoint representation; SU(2); SU(2)-representation; knot group},
language = {eng},
number = {5},
pages = {1685-1734},
publisher = {Association des Annales de l'Institut Fourier},
title = {Non abelian Reidemeister torsion and volume form on the SU(2)-representation space of knot groups},
url = {http://eudml.org/doc/116229},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Dubois, Jérôme
TI - Non abelian Reidemeister torsion and volume form on the SU(2)-representation space of knot groups
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 5
SP - 1685
EP - 1734
AB - For a knot $K$ in the 3-sphere and a regular representation of its group $G_K$ into SU(2) we construct a non abelian Reidemeister torsion form on the first twisted cohomology group of the knot exterior. This non abelian Reidemeister torsion form provides a volume form on the SU(2)-representation space of $G_K$. In another way, we construct using Casson’s original construction a natural volume form on the SU(2)-representation space of $G_K$. Next, we compare these two apparently different points of view on the representation variety and finally prove that they produce the same topological knot.
LA - eng
KW - Knot groups; representation space; volume form; Reidemeister torsion; Casson invariant; adjoint representation; SU(2); SU(2)-representation; knot group
UR - http://eudml.org/doc/116229
ER -

References

top
  1. S. Boyer, X. Zhang, Finite Dehn surgery on knots, J. Amer. Math. Soc. 9 (1996), 1005-1050 Zbl0936.57010MR1333293
  2. R. Crowell, R. Fox, Introduction to Knot Theory, (1963), Springer Verlag Zbl0126.39105MR146828
  3. M. Culler, P. Shallen, Varieties of group representations and splittings of 3 -manifolds, Ann. of Math. 117 (1983), 109-146 Zbl0529.57005MR683804
  4. J. Dubois, Étude d’une 1 -forme volume sur l’espace de représentations du groupe d’un noeud dans SU2, C. R. Acad. Sci. Paris, Sér. I 336 (2003), 641-646 Zbl1039.57004MR1988124
  5. J. Dubois, Torsion de Reidemeister non abélienne et forme volume sur l'espace des représentations du groupe d'un noeud, (2003) 
  6. J. Dubois, A volume form on the SU(2)-representation space of knot groups, (2005) Zbl1077.57009
  7. L. Guillou, A. Marin, Notes sur l'invariant de Casson des sphères d'homologie de dimension 3, Enseign. Math. 38 (1992), 233-290 Zbl0776.57008MR1189008
  8. M. Heusener, An orientation for the SU(2)-representation space of knot groups, Topology and its Applications 127 (2003), 175-197 Zbl1019.57002MR1953326
  9. M. Heusener, E. Klassen, Deformations of dihedral representations, Proc. Amer. Math. Soc. 125 (1997), 3039-3047 Zbl0883.57001MR1443155
  10. E. Klassen, Representations of knot groups in SU(2), Trans. Amer. Math. Soc. 326 (1991), 795-828 Zbl0743.57003MR1008696
  11. X.-S. Lin, A knot invariant via representation spaces, J. Diff. Geom. 35 (1992), 337-357 Zbl0774.57007MR1158339
  12. J. Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. 76 (1962), 134-147 Zbl0108.36502MR141115
  13. J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426 Zbl0147.23104MR196736
  14. J. Park, Half-density volumes of representation spaces of some 3 -manifolds and their application, Duke Math. J. 86 (1997), 493-515 Zbl0877.57009MR1432306
  15. J. Porti, Torsion de Reidemeister pour les variétés hyperboliques, Memoirs of the Amer. Math. Soc. 128 (1997) Zbl0881.57020MR1396960
  16. K. Reidemeister, Homotopieringen und Linsenräume, Abh. Math. Semin. Hamburg. Univ. 11 (1935), 102-109 Zbl0011.32404
  17. V. Turaev, Reidemeister torsion in knot theory (English version), Russian Math. Surveys 41 (1986), 119-182 Zbl0602.57005MR832411
  18. V. Turaev, Introduction to combinatorial Torsions, (2001), Birkhäuser Zbl0970.57001MR1809561
  19. V. Turaev, Torsions of 3 -dimensional Manifolds, (2002), Birkhäuser Zbl1012.57002MR1958479
  20. F. Waldhausen, Algebraic K -theory of generalized free products, 1, Ann. of Math. 108 (1978), 135-204 Zbl0397.18012MR498807
  21. A. Weil, Remarks on the cohomology of groups, Ann. of Math. 80 (1964), 149-157 Zbl0192.12802MR169956
  22. E. Witten, On quantum gauge theories in two dimensions, Commun. Math. Phys. 141 (1991), 153-209 Zbl0762.53063MR1133264

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.