Non abelian Reidemeister torsion and volume form on the SU(2)-representation space of knot groups
- [1] Université de Genève, section de mathématiques, CP64, 2-4 rue du lièvre, 1211 Genève 4 (Suisse), Université Blaise Pascal, laboratoire de mathématiques, avenue des Landais, 63177 Aubière cedex (France)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 5, page 1685-1734
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDubois, Jérôme. "Non abelian Reidemeister torsion and volume form on the SU(2)-representation space of knot groups." Annales de l’institut Fourier 55.5 (2005): 1685-1734. <http://eudml.org/doc/116229>.
@article{Dubois2005,
abstract = {For a knot $K$ in the 3-sphere and a regular representation of its group $G_K$ into SU(2)
we construct a non abelian Reidemeister torsion form on the first twisted cohomology
group of the knot exterior. This non abelian Reidemeister torsion form provides a volume
form on the SU(2)-representation space of $G_K$. In another way, we construct using
Casson’s original construction a natural volume form on the SU(2)-representation space of
$G_K$. Next, we compare these two apparently different points of view on the
representation variety and finally prove that they produce the same topological knot.},
affiliation = {Université de Genève, section de mathématiques, CP64, 2-4 rue du lièvre, 1211 Genève 4 (Suisse), Université Blaise Pascal, laboratoire de mathématiques, avenue des Landais, 63177 Aubière cedex (France)},
author = {Dubois, Jérôme},
journal = {Annales de l’institut Fourier},
keywords = {Knot groups; representation space; volume form; Reidemeister torsion; Casson invariant; adjoint representation; SU(2); SU(2)-representation; knot group},
language = {eng},
number = {5},
pages = {1685-1734},
publisher = {Association des Annales de l'Institut Fourier},
title = {Non abelian Reidemeister torsion and volume form on the SU(2)-representation space of knot groups},
url = {http://eudml.org/doc/116229},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Dubois, Jérôme
TI - Non abelian Reidemeister torsion and volume form on the SU(2)-representation space of knot groups
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 5
SP - 1685
EP - 1734
AB - For a knot $K$ in the 3-sphere and a regular representation of its group $G_K$ into SU(2)
we construct a non abelian Reidemeister torsion form on the first twisted cohomology
group of the knot exterior. This non abelian Reidemeister torsion form provides a volume
form on the SU(2)-representation space of $G_K$. In another way, we construct using
Casson’s original construction a natural volume form on the SU(2)-representation space of
$G_K$. Next, we compare these two apparently different points of view on the
representation variety and finally prove that they produce the same topological knot.
LA - eng
KW - Knot groups; representation space; volume form; Reidemeister torsion; Casson invariant; adjoint representation; SU(2); SU(2)-representation; knot group
UR - http://eudml.org/doc/116229
ER -
References
top- S. Boyer, X. Zhang, Finite Dehn surgery on knots, J. Amer. Math. Soc. 9 (1996), 1005-1050 Zbl0936.57010MR1333293
- R. Crowell, R. Fox, Introduction to Knot Theory, (1963), Springer Verlag Zbl0126.39105MR146828
- M. Culler, P. Shallen, Varieties of group representations and splittings of -manifolds, Ann. of Math. 117 (1983), 109-146 Zbl0529.57005MR683804
- J. Dubois, Étude d’une -forme volume sur l’espace de représentations du groupe d’un noeud dans SU2, C. R. Acad. Sci. Paris, Sér. I 336 (2003), 641-646 Zbl1039.57004MR1988124
- J. Dubois, Torsion de Reidemeister non abélienne et forme volume sur l'espace des représentations du groupe d'un noeud, (2003)
- J. Dubois, A volume form on the SU(2)-representation space of knot groups, (2005) Zbl1077.57009
- L. Guillou, A. Marin, Notes sur l'invariant de Casson des sphères d'homologie de dimension 3, Enseign. Math. 38 (1992), 233-290 Zbl0776.57008MR1189008
- M. Heusener, An orientation for the SU(2)-representation space of knot groups, Topology and its Applications 127 (2003), 175-197 Zbl1019.57002MR1953326
- M. Heusener, E. Klassen, Deformations of dihedral representations, Proc. Amer. Math. Soc. 125 (1997), 3039-3047 Zbl0883.57001MR1443155
- E. Klassen, Representations of knot groups in SU(2), Trans. Amer. Math. Soc. 326 (1991), 795-828 Zbl0743.57003MR1008696
- X.-S. Lin, A knot invariant via representation spaces, J. Diff. Geom. 35 (1992), 337-357 Zbl0774.57007MR1158339
- J. Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. 76 (1962), 134-147 Zbl0108.36502MR141115
- J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426 Zbl0147.23104MR196736
- J. Park, Half-density volumes of representation spaces of some -manifolds and their application, Duke Math. J. 86 (1997), 493-515 Zbl0877.57009MR1432306
- J. Porti, Torsion de Reidemeister pour les variétés hyperboliques, Memoirs of the Amer. Math. Soc. 128 (1997) Zbl0881.57020MR1396960
- K. Reidemeister, Homotopieringen und Linsenräume, Abh. Math. Semin. Hamburg. Univ. 11 (1935), 102-109 Zbl0011.32404
- V. Turaev, Reidemeister torsion in knot theory (English version), Russian Math. Surveys 41 (1986), 119-182 Zbl0602.57005MR832411
- V. Turaev, Introduction to combinatorial Torsions, (2001), Birkhäuser Zbl0970.57001MR1809561
- V. Turaev, Torsions of -dimensional Manifolds, (2002), Birkhäuser Zbl1012.57002MR1958479
- F. Waldhausen, Algebraic -theory of generalized free products, 1, Ann. of Math. 108 (1978), 135-204 Zbl0397.18012MR498807
- A. Weil, Remarks on the cohomology of groups, Ann. of Math. 80 (1964), 149-157 Zbl0192.12802MR169956
- E. Witten, On quantum gauge theories in two dimensions, Commun. Math. Phys. 141 (1991), 153-209 Zbl0762.53063MR1133264
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.