Invariant measures for the stable foliation on negatively curved periodic manifolds

François Ledrappier[1]

  • [1] University of Notre Dame Department of Mathematics Notre Dame, IN 46556-4618 (USA)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 1, page 85-105
  • ISSN: 0373-0956

Abstract

top
We classify reversible measures for the stable foliation on manifolds which are infinite covers of compact negatively curved manifolds. We extend the known results from hyperbolic surfaces to varying curvature and to all dimensions.

How to cite

top

Ledrappier, François. "Invariant measures for the stable foliation on negatively curved periodic manifolds." Annales de l’institut Fourier 58.1 (2008): 85-105. <http://eudml.org/doc/10318>.

@article{Ledrappier2008,
abstract = {We classify reversible measures for the stable foliation on manifolds which are infinite covers of compact negatively curved manifolds. We extend the known results from hyperbolic surfaces to varying curvature and to all dimensions.},
affiliation = {University of Notre Dame Department of Mathematics Notre Dame, IN 46556-4618 (USA)},
author = {Ledrappier, François},
journal = {Annales de l’institut Fourier},
keywords = {Invariant measure; stable foliation; negative curvature; stable and strong stable Anosov foliations; Busemann functions; horospheres; reversible and harmonic measures; alpha-conformal measure; leaf Laplacian; ergodicity},
language = {eng},
number = {1},
pages = {85-105},
publisher = {Association des Annales de l’institut Fourier},
title = {Invariant measures for the stable foliation on negatively curved periodic manifolds},
url = {http://eudml.org/doc/10318},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Ledrappier, François
TI - Invariant measures for the stable foliation on negatively curved periodic manifolds
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 1
SP - 85
EP - 105
AB - We classify reversible measures for the stable foliation on manifolds which are infinite covers of compact negatively curved manifolds. We extend the known results from hyperbolic surfaces to varying curvature and to all dimensions.
LA - eng
KW - Invariant measure; stable foliation; negative curvature; stable and strong stable Anosov foliations; Busemann functions; horospheres; reversible and harmonic measures; alpha-conformal measure; leaf Laplacian; ergodicity
UR - http://eudml.org/doc/10318
ER -

References

top
  1. M. Babillot, On the classification of invariant measures for horospherical foliations on nilpotent covers of negatively curved manifolds, Random walks and geometry (2004), 319-335, (V.A. Kaimanovich, Ed.) de Gruyter, Berlin Zbl1069.37022
  2. R. Bowen, B. Marcus, Unique ergodicity for horocycle foliations, Israel J. Math. 26 (1977), 43-67 Zbl0346.58009MR451307
  3. É. Cartan, Leçons sur la géométrie des espaces de Riemann, (1928) Zbl0060.38101
  4. M. Coornaert, A. Papadopoulos, Horofunctions and symbolic dynamics on Gromov hyperbolic groups, Glasgow Math.J. 43 (2001), 425-456 Zbl1044.20027MR1878587
  5. F. Dal’bo, Remarques sur le spectre des longueurs d’une surface et comptages, Bol. Soc. Brasil. Mat. (N.S.) 30 (1999), 199-221 Zbl1058.53063
  6. L. Garnett, Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal. 51 (1983), 285-311 Zbl0524.58026MR703080
  7. E. Ghys, P. de la Harpe, Sur les groupes hyperboliques, d’après Mikhael Gromov, Progress in math. 83 (1990), Birkhäuser Zbl0731.20025
  8. M. Gromov, Hyperbolic Groups, Essays in Group Theory 8 (1987), 75-263, Math. Sci. Res. Inst. Publ. Zbl0634.20015MR919829
  9. U. Hamenstädt, Harmonic measures for compact negatively curved manifolds, Acta Mathematica 178 (1997), 39-107 Zbl0899.58031MR1448711
  10. U. Hamenstädt, Ergodic properties of Gibbs measures on nilpotent covers, Ergod. Th. & Dynam. Sys. 22 (2002), 1169-1179 Zbl1014.37020MR1926280
  11. S. Helgason, Differential Geometry, Lie Groups and Symmetric spaces, Graduate Studies in Mathematics (2001), Academic Press, New York Zbl0451.53038MR1834454
  12. V. A. Kaimanovich, Brownian motion on foliations: Entropy, invariant measures, mixing, Funct. Anal. Appl. 22 (1989), 326-328 Zbl0675.58039MR977003
  13. F. I. Karpelevich, The geometry of geodesics and the eigenfunctions of the Laplacian on symmetric spaces, Trans. Moskov. Math. Soc. 14 (1965), 48-185 Zbl0164.22202MR231321
  14. A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, CUP (1995) Zbl0878.58020
  15. F. Ledrappier, O. Sarig, Invariant measures for the horocycle flow on periodic hyperbolic surfaces Zbl1186.37043
  16. G. A. Margulis, Discrete subgroups of semi-simple groups, Ergebnisse, Band 17, Springer-Verlag (1991) Zbl0732.22008
  17. J.-P. Otal, Sur la géométrie symplectique de l’espace des géodésiques d’une variété à courbure négative, Rev. Mat. Iberoamericana 8 (1992), 441-456 Zbl0777.53042
  18. T. Roblin, Ergodicité et équidistribution en courbure négative, 95 (2003), S.M.F. Zbl1056.37034MR2057305
  19. T. Roblin, Un théorème de Fatou pour les densités conformes avec applications aux revêtements galoisiens en courbure négative, Isr. J. Math. 147 (2005), 333-357 Zbl1274.37017MR2166367
  20. O. Sarig, Invariant measures for the horocycle flow on Abelian covers, Inv. Math. 157 (2004), 519-551 Zbl1052.37004MR2092768

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.