A linear extension operator for Whitney fields on closed o-minimal sets
- [1] Uniwersytet Jagielloński, Instytut Matematyki ul. Reymonta 4 30-059 Kraków (Poland)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 2, page 383-404
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPawłucki, Wiesław. "A linear extension operator for Whitney fields on closed o-minimal sets." Annales de l’institut Fourier 58.2 (2008): 383-404. <http://eudml.org/doc/10319>.
@article{Pawłucki2008,
abstract = {A continuous linear extension operator, different from Whitney’s, for $\mathcal\{C\}^p$-Whitney fields (p finite) on a closed o-minimal subset of $\mathbb\{R\}^n$ is constructed. The construction is based on special geometrical properties of o-minimal sets earlier studied by K. Kurdyka with the author.},
affiliation = {Uniwersytet Jagielloński, Instytut Matematyki ul. Reymonta 4 30-059 Kraków (Poland)},
author = {Pawłucki, Wiesław},
journal = {Annales de l’institut Fourier},
keywords = {Whitney field; extension operator; o-minimal structure; subanalytic set},
language = {eng},
number = {2},
pages = {383-404},
publisher = {Association des Annales de l’institut Fourier},
title = {A linear extension operator for Whitney fields on closed o-minimal sets},
url = {http://eudml.org/doc/10319},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Pawłucki, Wiesław
TI - A linear extension operator for Whitney fields on closed o-minimal sets
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 383
EP - 404
AB - A continuous linear extension operator, different from Whitney’s, for $\mathcal{C}^p$-Whitney fields (p finite) on a closed o-minimal subset of $\mathbb{R}^n$ is constructed. The construction is based on special geometrical properties of o-minimal sets earlier studied by K. Kurdyka with the author.
LA - eng
KW - Whitney field; extension operator; o-minimal structure; subanalytic set
UR - http://eudml.org/doc/10319
ER -
References
top- M. Coste, An Introduction to O-minimal Geometry, (2000), Istituti Editoriali e Poligrafici Internazionali, Pisa-Roma
- L. van den Dries, Tame Topology and O-minimal Structures, (1998), Cambridge University Press Zbl0953.03045MR1633348
- L. van den Dries, C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540 Zbl0889.03025MR1404337
- G. Glaeser, Étude de quelques algèbres tayloriennes, J. Anal. Math. 6 (1958), 1-124 Zbl0091.28103MR101294
- K. Kurdyka, On a subanalytic stratification satisfying a Whitney property with exponent 1, Proc. Conference Real Algebraic Geometry (1991), 316-322, Springer, Rennes Zbl0779.32006MR1226263
- K. Kurdyka, W. Pawłucki, Subanalytic version of Whitney’s extension theorem, Studia Math. 124 (3) (1997), 269-280 Zbl0955.32006
- J.-M. Lion, J.-P. Rolin, Intégration des fonctions sous-analytiques et volumes des sous-ensembles sous-analytiques, Ann. Inst. Fourier, Grenoble 68,3 (1998), 755-767 Zbl0912.32007MR1644093
- B. Malgrange, Ideals of Differentiable Functions, (1966), Oxford University Press Zbl0177.17902MR212575
- A. Parusiński, Lipschitz stratification of subanalytic sets, Ann. Scient. Ec. Norm. Sup. 27 (1994), 661-696 Zbl0819.32007MR1307677
- W. Pawłucki, A decomposition of a set definable in an o-minimal structure into perfectly situated sets, Ann. Polon. Math. LXXIX.2 (2002), 171-184 Zbl1024.03036
- E. M. Stein, Singular Integrals and Differentiability Properties of Functions, (1970), Princeton University Press Zbl0207.13501MR290095
- J. Cl Tougeron, Idéaux des Fonctions Différentiables, (1972), Springer Zbl0251.58001MR440598
- H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc. 36 (1934), 63-89 Zbl0008.24902MR1501735
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.