A linear extension operator for Whitney fields on closed o-minimal sets

Wiesław Pawłucki[1]

  • [1] Uniwersytet Jagielloński, Instytut Matematyki ul. Reymonta 4 30-059 Kraków (Poland)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 2, page 383-404
  • ISSN: 0373-0956

Abstract

top
A continuous linear extension operator, different from Whitney’s, for 𝒞 p -Whitney fields (p finite) on a closed o-minimal subset of n is constructed. The construction is based on special geometrical properties of o-minimal sets earlier studied by K. Kurdyka with the author.

How to cite

top

Pawłucki, Wiesław. "A linear extension operator for Whitney fields on closed o-minimal sets." Annales de l’institut Fourier 58.2 (2008): 383-404. <http://eudml.org/doc/10319>.

@article{Pawłucki2008,
abstract = {A continuous linear extension operator, different from Whitney’s, for $\mathcal\{C\}^p$-Whitney fields (p finite) on a closed o-minimal subset of $\mathbb\{R\}^n$ is constructed. The construction is based on special geometrical properties of o-minimal sets earlier studied by K. Kurdyka with the author.},
affiliation = {Uniwersytet Jagielloński, Instytut Matematyki ul. Reymonta 4 30-059 Kraków (Poland)},
author = {Pawłucki, Wiesław},
journal = {Annales de l’institut Fourier},
keywords = {Whitney field; extension operator; o-minimal structure; subanalytic set},
language = {eng},
number = {2},
pages = {383-404},
publisher = {Association des Annales de l’institut Fourier},
title = {A linear extension operator for Whitney fields on closed o-minimal sets},
url = {http://eudml.org/doc/10319},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Pawłucki, Wiesław
TI - A linear extension operator for Whitney fields on closed o-minimal sets
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 383
EP - 404
AB - A continuous linear extension operator, different from Whitney’s, for $\mathcal{C}^p$-Whitney fields (p finite) on a closed o-minimal subset of $\mathbb{R}^n$ is constructed. The construction is based on special geometrical properties of o-minimal sets earlier studied by K. Kurdyka with the author.
LA - eng
KW - Whitney field; extension operator; o-minimal structure; subanalytic set
UR - http://eudml.org/doc/10319
ER -

References

top
  1. M. Coste, An Introduction to O-minimal Geometry, (2000), Istituti Editoriali e Poligrafici Internazionali, Pisa-Roma 
  2. L. van den Dries, Tame Topology and O-minimal Structures, (1998), Cambridge University Press Zbl0953.03045MR1633348
  3. L. van den Dries, C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540 Zbl0889.03025MR1404337
  4. G. Glaeser, Étude de quelques algèbres tayloriennes, J. Anal. Math. 6 (1958), 1-124 Zbl0091.28103MR101294
  5. K. Kurdyka, On a subanalytic stratification satisfying a Whitney property with exponent 1, Proc. Conference Real Algebraic Geometry (1991), 316-322, Springer, Rennes Zbl0779.32006MR1226263
  6. K. Kurdyka, W. Pawłucki, Subanalytic version of Whitney’s extension theorem, Studia Math. 124 (3) (1997), 269-280 Zbl0955.32006
  7. J.-M. Lion, J.-P. Rolin, Intégration des fonctions sous-analytiques et volumes des sous-ensembles sous-analytiques, Ann. Inst. Fourier, Grenoble 68,3 (1998), 755-767 Zbl0912.32007MR1644093
  8. B. Malgrange, Ideals of Differentiable Functions, (1966), Oxford University Press Zbl0177.17902MR212575
  9. A. Parusiński, Lipschitz stratification of subanalytic sets, Ann. Scient. Ec. Norm. Sup. 27 (1994), 661-696 Zbl0819.32007MR1307677
  10. W. Pawłucki, A decomposition of a set definable in an o-minimal structure into perfectly situated sets, Ann. Polon. Math. LXXIX.2 (2002), 171-184 Zbl1024.03036
  11. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, (1970), Princeton University Press Zbl0207.13501MR290095
  12. J. Cl Tougeron, Idéaux des Fonctions Différentiables, (1972), Springer Zbl0251.58001MR440598
  13. H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc. 36 (1934), 63-89 Zbl0008.24902MR1501735

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.