Subanalytic version of Whitney's extension theorem
Krzysztof Kurdyka; Wiesław Pawłucki
Studia Mathematica (1997)
- Volume: 124, Issue: 3, page 269-280
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topKurdyka, Krzysztof, and Pawłucki, Wiesław. "Subanalytic version of Whitney's extension theorem." Studia Mathematica 124.3 (1997): 269-280. <http://eudml.org/doc/216414>.
@article{Kurdyka1997,
abstract = {For any subanalytic $C^k$-Whitney field (k finite), we construct its subanalytic $C^k$-extension to $ℝ^n$. Our method also applies to other o-minimal structures; e.g., to semialgebraic Whitney fields.},
author = {Kurdyka, Krzysztof, Pawłucki, Wiesław},
journal = {Studia Mathematica},
keywords = {subanalytic extension; Whitney's extension theorem; semialgebraic Whitney fields},
language = {eng},
number = {3},
pages = {269-280},
title = {Subanalytic version of Whitney's extension theorem},
url = {http://eudml.org/doc/216414},
volume = {124},
year = {1997},
}
TY - JOUR
AU - Kurdyka, Krzysztof
AU - Pawłucki, Wiesław
TI - Subanalytic version of Whitney's extension theorem
JO - Studia Mathematica
PY - 1997
VL - 124
IS - 3
SP - 269
EP - 280
AB - For any subanalytic $C^k$-Whitney field (k finite), we construct its subanalytic $C^k$-extension to $ℝ^n$. Our method also applies to other o-minimal structures; e.g., to semialgebraic Whitney fields.
LA - eng
KW - subanalytic extension; Whitney's extension theorem; semialgebraic Whitney fields
UR - http://eudml.org/doc/216414
ER -
References
top- [1] E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5-42. Zbl0674.32002
- [2] E. Bierstone and G. W. Schwarz, Continuous linear division and extension of functions, Duke Math. J. 50 (1983), 233-271. Zbl0521.32008
- [3] J. Bochnak, M. Coste et M.-F. Roy, Géométrie algébrique réelle, Springer, 1987. Zbl0633.14016
- [4] Z. Denkowska, S. Łojasiewicz and J. Stasica, Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 529-536. Zbl0435.32006
- [5] Z. Denkowska, Sur le théorème du complémentaire pour les ensembles sous-analytiques, ibid., 537-539. Zbl0457.32003
- [6] A. M. Gabrielov, Projections of semianalytic sets, Funktsional. Anal. i Prilozhen. 2 (4) (1968), 18-30 (in Russian).
- [7] M. Gromov, Entropy, homology and semialgebraic geometry [after Y. Yomdin], Séminaire Bourbaki, 38ème année, 1985-86, no. 663; Astérisque 145-146 (1987), 225-240.
- [8] H. Hironaka, Subanalytic sets, in: Number Theory, Algebraic Geometry and Commutative Algebra in Honor of Y. Akizuki, Kinokuniya, Tokyo, 1973, 453-493.
- [9] K. Kurdyka, Points réguliers d'un sous-analytique, Ann. Inst. Fourier (Grenoble) 38 (1) (1988), 133-156. Zbl0619.32007
- [10] K. Kurdyka, On a subanalytic stratification satisfying a Whitney property with exponent 1, in: Proc. Conference Real Algebraic Geometry - Rennes 1991, Lecture Notes in Math. 1524, Springer, 1992, 316-322. Zbl0779.32006
- [11] S. Łojasiewicz, Ensembles semi-analytiques, Inst. Hautes Études Sci., Bures-sur-Yvette, 1964.
- [12] S. Łojasiewicz, Sur la géométrie semi- et sous-analytique, Ann. Inst. Fourier (Grenoble) 43 (1993), 1575-1595. Zbl0803.32002
- [13] B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, 1966.
- [14] A. Parusiński, Lipschitz properties of semi-analytic sets, Ann. Inst. Fourier (Grenoble) 38 (4) (1988), 189-213. Zbl0631.32006
- [15] A. Parusiński, Lipschitz stratification of subanalytic sets, Ann. Sci. Ecole Norm. Sup. 27 (1994), 661-696. Zbl0819.32007
- [16] J. C. Tougeron, Idéaux de Fonctions Différentiables, Springer, 1972. Zbl0251.58001
- [17] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540. Zbl0889.03025
- [18] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89. Zbl0008.24902
- [19] H. Whitney, Functions differentiable on the boundaries of regions, Ann. of Math. 35 (1934), 482-485. Zbl60.0217.03
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.