Subanalytic version of Whitney's extension theorem

Krzysztof Kurdyka; Wiesław Pawłucki

Studia Mathematica (1997)

  • Volume: 124, Issue: 3, page 269-280
  • ISSN: 0039-3223

Abstract

top
For any subanalytic C k -Whitney field (k finite), we construct its subanalytic C k -extension to n . Our method also applies to other o-minimal structures; e.g., to semialgebraic Whitney fields.

How to cite

top

Kurdyka, Krzysztof, and Pawłucki, Wiesław. "Subanalytic version of Whitney's extension theorem." Studia Mathematica 124.3 (1997): 269-280. <http://eudml.org/doc/216414>.

@article{Kurdyka1997,
abstract = {For any subanalytic $C^k$-Whitney field (k finite), we construct its subanalytic $C^k$-extension to $ℝ^n$. Our method also applies to other o-minimal structures; e.g., to semialgebraic Whitney fields.},
author = {Kurdyka, Krzysztof, Pawłucki, Wiesław},
journal = {Studia Mathematica},
keywords = {subanalytic extension; Whitney's extension theorem; semialgebraic Whitney fields},
language = {eng},
number = {3},
pages = {269-280},
title = {Subanalytic version of Whitney's extension theorem},
url = {http://eudml.org/doc/216414},
volume = {124},
year = {1997},
}

TY - JOUR
AU - Kurdyka, Krzysztof
AU - Pawłucki, Wiesław
TI - Subanalytic version of Whitney's extension theorem
JO - Studia Mathematica
PY - 1997
VL - 124
IS - 3
SP - 269
EP - 280
AB - For any subanalytic $C^k$-Whitney field (k finite), we construct its subanalytic $C^k$-extension to $ℝ^n$. Our method also applies to other o-minimal structures; e.g., to semialgebraic Whitney fields.
LA - eng
KW - subanalytic extension; Whitney's extension theorem; semialgebraic Whitney fields
UR - http://eudml.org/doc/216414
ER -

References

top
  1. [1] E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5-42. Zbl0674.32002
  2. [2] E. Bierstone and G. W. Schwarz, Continuous linear division and extension of C functions, Duke Math. J. 50 (1983), 233-271. Zbl0521.32008
  3. [3] J. Bochnak, M. Coste et M.-F. Roy, Géométrie algébrique réelle, Springer, 1987. Zbl0633.14016
  4. [4] Z. Denkowska, S. Łojasiewicz and J. Stasica, Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 529-536. Zbl0435.32006
  5. [5] Z. Denkowska, Sur le théorème du complémentaire pour les ensembles sous-analytiques, ibid., 537-539. Zbl0457.32003
  6. [6] A. M. Gabrielov, Projections of semianalytic sets, Funktsional. Anal. i Prilozhen. 2 (4) (1968), 18-30 (in Russian). 
  7. [7] M. Gromov, Entropy, homology and semialgebraic geometry [after Y. Yomdin], Séminaire Bourbaki, 38ème année, 1985-86, no. 663; Astérisque 145-146 (1987), 225-240. 
  8. [8] H. Hironaka, Subanalytic sets, in: Number Theory, Algebraic Geometry and Commutative Algebra in Honor of Y. Akizuki, Kinokuniya, Tokyo, 1973, 453-493. 
  9. [9] K. Kurdyka, Points réguliers d'un sous-analytique, Ann. Inst. Fourier (Grenoble) 38 (1) (1988), 133-156. Zbl0619.32007
  10. [10] K. Kurdyka, On a subanalytic stratification satisfying a Whitney property with exponent 1, in: Proc. Conference Real Algebraic Geometry - Rennes 1991, Lecture Notes in Math. 1524, Springer, 1992, 316-322. Zbl0779.32006
  11. [11] S. Łojasiewicz, Ensembles semi-analytiques, Inst. Hautes Études Sci., Bures-sur-Yvette, 1964. 
  12. [12] S. Łojasiewicz, Sur la géométrie semi- et sous-analytique, Ann. Inst. Fourier (Grenoble) 43 (1993), 1575-1595. Zbl0803.32002
  13. [13] B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, 1966. 
  14. [14] A. Parusiński, Lipschitz properties of semi-analytic sets, Ann. Inst. Fourier (Grenoble) 38 (4) (1988), 189-213. Zbl0631.32006
  15. [15] A. Parusiński, Lipschitz stratification of subanalytic sets, Ann. Sci. Ecole Norm. Sup. 27 (1994), 661-696. Zbl0819.32007
  16. [16] J. C. Tougeron, Idéaux de Fonctions Différentiables, Springer, 1972. Zbl0251.58001
  17. [17] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540. Zbl0889.03025
  18. [18] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89. Zbl0008.24902
  19. [19] H. Whitney, Functions differentiable on the boundaries of regions, Ann. of Math. 35 (1934), 482-485. Zbl60.0217.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.