Algebraic complete integrability of an integrable system of Beauville

Jun-Muk Hwang[1]; Yasunari Nagai[1]

  • [1] Korea Institute for Advanced Study (KIAS) 207-43 Cheongnyangni 2-dong Dongdaemun-gu, Seoul 130-722 (Korea)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 2, page 559-570
  • ISSN: 0373-0956

Abstract

top
We show that the Beauville’s integrable system on a ten dimensional moduli space of sheaves on a K3 surface constructed via a moduli space of stable sheaves on cubic threefolds is algebraically completely integrable, using O’Grady’s construction of a symplectic resolution of the moduli space of sheaves on a K3.

How to cite

top

Hwang, Jun-Muk, and Nagai, Yasunari. "Algebraic complete integrability of an integrable system of Beauville." Annales de l’institut Fourier 58.2 (2008): 559-570. <http://eudml.org/doc/10324>.

@article{Hwang2008,
abstract = {We show that the Beauville’s integrable system on a ten dimensional moduli space of sheaves on a K3 surface constructed via a moduli space of stable sheaves on cubic threefolds is algebraically completely integrable, using O’Grady’s construction of a symplectic resolution of the moduli space of sheaves on a K3.},
affiliation = {Korea Institute for Advanced Study (KIAS) 207-43 Cheongnyangni 2-dong Dongdaemun-gu, Seoul 130-722 (Korea); Korea Institute for Advanced Study (KIAS) 207-43 Cheongnyangni 2-dong Dongdaemun-gu, Seoul 130-722 (Korea)},
author = {Hwang, Jun-Muk, Nagai, Yasunari},
journal = {Annales de l’institut Fourier},
keywords = {Integrable system; moduli space of stable sheaves; surface; Lagrangian fibration; integrable system},
language = {eng},
number = {2},
pages = {559-570},
publisher = {Association des Annales de l’institut Fourier},
title = {Algebraic complete integrability of an integrable system of Beauville},
url = {http://eudml.org/doc/10324},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Hwang, Jun-Muk
AU - Nagai, Yasunari
TI - Algebraic complete integrability of an integrable system of Beauville
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 559
EP - 570
AB - We show that the Beauville’s integrable system on a ten dimensional moduli space of sheaves on a K3 surface constructed via a moduli space of stable sheaves on cubic threefolds is algebraically completely integrable, using O’Grady’s construction of a symplectic resolution of the moduli space of sheaves on a K3.
LA - eng
KW - Integrable system; moduli space of stable sheaves; surface; Lagrangian fibration; integrable system
UR - http://eudml.org/doc/10324
ER -

References

top
  1. Arnaud Beauville, Vector bundles on the cubic threefold, Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000) 312 (2002), 71-86, Amer. Math. Soc., Providence, RI Zbl1056.14059MR1941574
  2. Stéphane Druel, Espace des modules de faisceaux de rang 2 semi-stables de classes de Chern c 1 = 0 , c 2 = 2 et c 3 = 0 sur la cubique de 4 , Internat. Math. Res. Notices 19 (2000), 985-1004 Zbl1024.14004MR1792346
  3. Daniel Huybrechts, Manfred Lehn, The Geometry of Moduli Spaces of Sheaves, (1997), Friedr. Vieweg & Sohn, Braunschweig Zbl0872.14002MR1450870
  4. Frances Clare Kirwan, Partial desingularisations of quotients of nonsingular varieties and their Betti numbers, Ann. of Math. (2) 122 (1985), 41-85 Zbl0592.14011MR799252
  5. Manfred Lehn, Christoph Sorger, La singularité de O’Grady, J. Alg. Geom. 15 (2006), 753-770 Zbl1156.14030
  6. Shigeru Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K 3 surface, Invent. Math. 77 (1984), 101-116 Zbl0565.14002MR751133
  7. Kieran G. O’Grady, Desingularized moduli spaces of sheaves on a K 3 , J. Reine Angew. Math. 512 (1999), 49-117 Zbl0928.14029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.