A Bochner type theorem for inductive limits of Gelfand pairs

Marouane Rabaoui[1]

  • [1] Université Paul Verlaine-Metz Laboratoire de Mathématiques et Applications de Metz Bât. A Île de Saulcy 57045 Metz cedex 01 (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 5, page 1551-1573
  • ISSN: 0373-0956

Abstract

top
In this article, we prove a generalisation of Bochner-Godement theorem. Our result deals with Olshanski spherical pairs ( G , K ) defined as inductive limits of increasing sequences of Gelfand pairs ( G ( n ) , K ( n ) ) n 1 . By using the integral representation theory of G. Choquet on convex cones, we establish a Bochner type representation of any element ϕ of the set 𝒫 ( G ) of K -biinvariant continuous functions of positive type on G .

How to cite

top

Rabaoui, Marouane. "A Bochner type theorem for inductive limits of Gelfand pairs." Annales de l’institut Fourier 58.5 (2008): 1551-1573. <http://eudml.org/doc/10356>.

@article{Rabaoui2008,
abstract = {In this article, we prove a generalisation of Bochner-Godement theorem. Our result deals with Olshanski spherical pairs $(G, K)$ defined as inductive limits of increasing sequences of Gelfand pairs $(G(n), K(n))_\{n\ge 1\}$. By using the integral representation theory of G. Choquet on convex cones, we establish a Bochner type representation of any element $\varphi $ of the set $\{\mathcal\{P\}\}^\{\natural \}(G)$ of $K$-biinvariant continuous functions of positive type on $G$.},
affiliation = {Université Paul Verlaine-Metz Laboratoire de Mathématiques et Applications de Metz Bât. A Île de Saulcy 57045 Metz cedex 01 (France)},
author = {Rabaoui, Marouane},
journal = {Annales de l’institut Fourier},
keywords = {Function of positive type; Gelfand pair; Bochner-Godement theorem; spherical pair; inductive limit; Von Neumann algebra; function of positive type; von Neumann algebra},
language = {eng},
number = {5},
pages = {1551-1573},
publisher = {Association des Annales de l’institut Fourier},
title = {A Bochner type theorem for inductive limits of Gelfand pairs},
url = {http://eudml.org/doc/10356},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Rabaoui, Marouane
TI - A Bochner type theorem for inductive limits of Gelfand pairs
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 5
SP - 1551
EP - 1573
AB - In this article, we prove a generalisation of Bochner-Godement theorem. Our result deals with Olshanski spherical pairs $(G, K)$ defined as inductive limits of increasing sequences of Gelfand pairs $(G(n), K(n))_{n\ge 1}$. By using the integral representation theory of G. Choquet on convex cones, we establish a Bochner type representation of any element $\varphi $ of the set ${\mathcal{P}}^{\natural }(G)$ of $K$-biinvariant continuous functions of positive type on $G$.
LA - eng
KW - Function of positive type; Gelfand pair; Bochner-Godement theorem; spherical pair; inductive limit; Von Neumann algebra; function of positive type; von Neumann algebra
UR - http://eudml.org/doc/10356
ER -

References

top
  1. S. Bochner, Lectures on Fourier integrals., (1959), Princeton University Press, Princeton, N.J. Zbl0085.31802MR107124
  2. N. Bourbaki, Éléments de mathématique. Fasc. XX. Livre I: Théorie des ensembles. Chapitre 3: Ensembles ordonnés cardinaux, nombres entiers, (1963), Hermann, Paris Zbl0125.00603MR154814
  3. J. Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), (1957), Gauthier-Villars, Paris Zbl0088.32304
  4. J. Dixmier, Les C * -algèbres et leurs représentations, (1964), Gauthier-Villars, Paris Zbl0152.32902MR171173
  5. R. S. Doran, J. M. G. Fell, Representations of * -algebras, locally compact groups, and Banach * -algebraic bundles. Vol. 1, (1988), Academic Press Inc., Boston, MA Zbl0652.46050MR936628
  6. J. Faraut, Analyse harmonique sur les paires de Guelfand et les espaces hyperboliques, Analyse harmonique. Les cours du C.I.M.P.A. (1982), 315-446, P. Eymard, Nice Zbl0569.43002
  7. J. Faraut, Espaces hilbertiens invariants de fonctions holomorphes, Analyse sur les groupes de Lie et théorie des représentations (Kénitra, 1999) 7 (2003), 101-167, Soc. Math. France, Paris Zbl1044.46023MR2038649
  8. J. Faraut, Infinite dimensional harmonic analysis and probability, Probability measures on groups: recent directions and trends (2006), 179-254, Tata Inst. Fund. Res., Mumbai Zbl1157.43001MR2213479
  9. R. Godement, Sur les fonctions de type positif, C. R. Acad. Sci. Paris 221 (1945), 69-71 Zbl0063.01653MR14216
  10. R. Godement, Sur quelques propriétés des fonctions de type positif définies sur un groupe quelconque, C. R. Acad. Sci. Paris 222 (1946), 529-531 Zbl0061.25505MR15667
  11. R. Godement, Les fonctions de type positif et la théorie des groupes, Trans. Amer. Math. Soc. 63 (1948), 1-84 Zbl0031.35903MR23243
  12. T. Hirai, E. Hirai, Positive definite class functions on a topological group and characters of factor representations, J. Math. Kyoto Univ. 45 (2005), 355-379 Zbl1096.22005MR2161697
  13. S. Kerov, G. Olshanski, A. Vershik, Harmonic analysis on the infinite symmetric group, Invent. Math. 158 (2004), 551-642 Zbl1057.43005MR2104794
  14. G. Olshanski, Unitary representations of infinite-dimensional pairs ( G , K ) and the formalism of R. Howe, Representation of Lie groups and related topics 7 (1990), 269-463, Gordon and Breach, New York Zbl0724.22020MR1104279
  15. G. Olshanski, The problem of harmonic analysis on the infinite-dimensional unitary group, J. Funct. Anal. 205 (2003), 464-524 Zbl1036.43002MR2018416
  16. G. Olshanski, A. Vershik, Ergodic unitarily invariant measures on the space of infinite Hermitian matrices, Contemporary mathematical physics 175 (1996), 137-175, Amer. Math. Soc., Providence, RI Zbl0853.22016MR1402920
  17. R. Phelps, Lectures on Choquet’s theorem, 1757 (2001), Springer-Verlag, Berlin Zbl0997.46005
  18. W. Rudin, Functional analysis, (1973), McGraw-Hill Book Co., New York Zbl0253.46001MR365062
  19. E. Thoma, Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe, Math. Z. 85 (1964), 40-61 Zbl0192.12402MR173169
  20. E. Thoma, Über positiv-definite Klassenfunctionen abzählbarer Gruppen, Math. Z. 84 (1964), 389-402 Zbl0136.11701MR170217
  21. D. Voiculescu, Représentations factorielles de type II1 de U ( ) , J. Math. Pures Appl. (9) 55 (1976), 1-20 Zbl0352.22014MR442153

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.