A Bochner type theorem for inductive limits of Gelfand pairs
- [1] Université Paul Verlaine-Metz Laboratoire de Mathématiques et Applications de Metz Bât. A Île de Saulcy 57045 Metz cedex 01 (France)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 5, page 1551-1573
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topRabaoui, Marouane. "A Bochner type theorem for inductive limits of Gelfand pairs." Annales de l’institut Fourier 58.5 (2008): 1551-1573. <http://eudml.org/doc/10356>.
@article{Rabaoui2008,
abstract = {In this article, we prove a generalisation of Bochner-Godement theorem. Our result deals with Olshanski spherical pairs $(G, K)$ defined as inductive limits of increasing sequences of Gelfand pairs $(G(n), K(n))_\{n\ge 1\}$. By using the integral representation theory of G. Choquet on convex cones, we establish a Bochner type representation of any element $\varphi $ of the set $\{\mathcal\{P\}\}^\{\natural \}(G)$ of $K$-biinvariant continuous functions of positive type on $G$.},
affiliation = {Université Paul Verlaine-Metz Laboratoire de Mathématiques et Applications de Metz Bât. A Île de Saulcy 57045 Metz cedex 01 (France)},
author = {Rabaoui, Marouane},
journal = {Annales de l’institut Fourier},
keywords = {Function of positive type; Gelfand pair; Bochner-Godement theorem; spherical pair; inductive limit; Von Neumann algebra; function of positive type; von Neumann algebra},
language = {eng},
number = {5},
pages = {1551-1573},
publisher = {Association des Annales de l’institut Fourier},
title = {A Bochner type theorem for inductive limits of Gelfand pairs},
url = {http://eudml.org/doc/10356},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Rabaoui, Marouane
TI - A Bochner type theorem for inductive limits of Gelfand pairs
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 5
SP - 1551
EP - 1573
AB - In this article, we prove a generalisation of Bochner-Godement theorem. Our result deals with Olshanski spherical pairs $(G, K)$ defined as inductive limits of increasing sequences of Gelfand pairs $(G(n), K(n))_{n\ge 1}$. By using the integral representation theory of G. Choquet on convex cones, we establish a Bochner type representation of any element $\varphi $ of the set ${\mathcal{P}}^{\natural }(G)$ of $K$-biinvariant continuous functions of positive type on $G$.
LA - eng
KW - Function of positive type; Gelfand pair; Bochner-Godement theorem; spherical pair; inductive limit; Von Neumann algebra; function of positive type; von Neumann algebra
UR - http://eudml.org/doc/10356
ER -
References
top- S. Bochner, Lectures on Fourier integrals., (1959), Princeton University Press, Princeton, N.J. Zbl0085.31802MR107124
- N. Bourbaki, Éléments de mathématique. Fasc. XX. Livre I: Théorie des ensembles. Chapitre 3: Ensembles ordonnés cardinaux, nombres entiers, (1963), Hermann, Paris Zbl0125.00603MR154814
- J. Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), (1957), Gauthier-Villars, Paris Zbl0088.32304
- J. Dixmier, Les -algèbres et leurs représentations, (1964), Gauthier-Villars, Paris Zbl0152.32902MR171173
- R. S. Doran, J. M. G. Fell, Representations of -algebras, locally compact groups, and Banach -algebraic bundles. Vol. 1, (1988), Academic Press Inc., Boston, MA Zbl0652.46050MR936628
- J. Faraut, Analyse harmonique sur les paires de Guelfand et les espaces hyperboliques, Analyse harmonique. Les cours du C.I.M.P.A. (1982), 315-446, P. Eymard, Nice Zbl0569.43002
- J. Faraut, Espaces hilbertiens invariants de fonctions holomorphes, Analyse sur les groupes de Lie et théorie des représentations (Kénitra, 1999) 7 (2003), 101-167, Soc. Math. France, Paris Zbl1044.46023MR2038649
- J. Faraut, Infinite dimensional harmonic analysis and probability, Probability measures on groups: recent directions and trends (2006), 179-254, Tata Inst. Fund. Res., Mumbai Zbl1157.43001MR2213479
- R. Godement, Sur les fonctions de type positif, C. R. Acad. Sci. Paris 221 (1945), 69-71 Zbl0063.01653MR14216
- R. Godement, Sur quelques propriétés des fonctions de type positif définies sur un groupe quelconque, C. R. Acad. Sci. Paris 222 (1946), 529-531 Zbl0061.25505MR15667
- R. Godement, Les fonctions de type positif et la théorie des groupes, Trans. Amer. Math. Soc. 63 (1948), 1-84 Zbl0031.35903MR23243
- T. Hirai, E. Hirai, Positive definite class functions on a topological group and characters of factor representations, J. Math. Kyoto Univ. 45 (2005), 355-379 Zbl1096.22005MR2161697
- S. Kerov, G. Olshanski, A. Vershik, Harmonic analysis on the infinite symmetric group, Invent. Math. 158 (2004), 551-642 Zbl1057.43005MR2104794
- G. Olshanski, Unitary representations of infinite-dimensional pairs and the formalism of R. Howe, Representation of Lie groups and related topics 7 (1990), 269-463, Gordon and Breach, New York Zbl0724.22020MR1104279
- G. Olshanski, The problem of harmonic analysis on the infinite-dimensional unitary group, J. Funct. Anal. 205 (2003), 464-524 Zbl1036.43002MR2018416
- G. Olshanski, A. Vershik, Ergodic unitarily invariant measures on the space of infinite Hermitian matrices, Contemporary mathematical physics 175 (1996), 137-175, Amer. Math. Soc., Providence, RI Zbl0853.22016MR1402920
- R. Phelps, Lectures on Choquet’s theorem, 1757 (2001), Springer-Verlag, Berlin Zbl0997.46005
- W. Rudin, Functional analysis, (1973), McGraw-Hill Book Co., New York Zbl0253.46001MR365062
- E. Thoma, Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe, Math. Z. 85 (1964), 40-61 Zbl0192.12402MR173169
- E. Thoma, Über positiv-definite Klassenfunctionen abzählbarer Gruppen, Math. Z. 84 (1964), 389-402 Zbl0136.11701MR170217
- D. Voiculescu, Représentations factorielles de type II1 de , J. Math. Pures Appl. (9) 55 (1976), 1-20 Zbl0352.22014MR442153
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.