Stable twisted curves and their r -spin structures

Alessandro Chiodo[1]

  • [1] Université de Grenoble I Institut Fourier UMR 5582 CNRS 100 rue des Maths BP 74 38402 St Martin d’H�res (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 5, page 1635-1689
  • ISSN: 0373-0956

Abstract

top
The subject of this article is the notion of r -spin structure: a line bundle whose r th power is isomorphic to the canonical bundle. Over the moduli functor M g of smooth genus- g curves, r -spin structures form a finite torsor under the group of r -torsion line bundles. Over the moduli functor M ¯ g of stable curves, r -spin structures form an étale stack, but both the finiteness and the torsor structure are lost.In the present work, we show how this bad picture can be definitely improved just by placing the problem in the category of Abramovich and Vistoli’s twisted curves. First, we find that within such a category there exist several different compactifications of M g ; each one corresponds to a different multiindex l = ( l 0 , l 1 , ) identifying a notion of stability: l -stability. Then, we determine the choices of l for which r -spin structures form a finite torsor over the moduli of l -stable curves.

How to cite

top

Chiodo, Alessandro. "Stable twisted curves and their $r$-spin structures." Annales de l’institut Fourier 58.5 (2008): 1635-1689. <http://eudml.org/doc/10358>.

@article{Chiodo2008,
abstract = {The subject of this article is the notion of $r$-spin structure: a line bundle whose $r$th power is isomorphic to the canonical bundle. Over the moduli functor $\{\mathsf \{M\}\}_g$ of smooth genus-$g$ curves, $r$-spin structures form a finite torsor under the group of $r$-torsion line bundles. Over the moduli functor $\overline\{\mathsf \{M\}\}_g$ of stable curves, $r$-spin structures form an étale stack, but both the finiteness and the torsor structure are lost.In the present work, we show how this bad picture can be definitely improved just by placing the problem in the category of Abramovich and Vistoli’s twisted curves. First, we find that within such a category there exist several different compactifications of $\{\mathsf \{M\}\}_g$; each one corresponds to a different multiindex $\vec\{l\}=(l_0,l_1,\dots )$ identifying a notion of stability: $\vec\{l\}$-stability. Then, we determine the choices of $\vec\{l\}$ for which $r$-spin structures form a finite torsor over the moduli of $\vec\{l\}$-stable curves.},
affiliation = {Université de Grenoble I Institut Fourier UMR 5582 CNRS 100 rue des Maths BP 74 38402 St Martin d’H�res (France)},
author = {Chiodo, Alessandro},
journal = {Annales de l’institut Fourier},
keywords = {Spin structures; twisted curves; moduli of curves; moduli stack of curves; spin structures},
language = {eng},
number = {5},
pages = {1635-1689},
publisher = {Association des Annales de l’institut Fourier},
title = {Stable twisted curves and their $r$-spin structures},
url = {http://eudml.org/doc/10358},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Chiodo, Alessandro
TI - Stable twisted curves and their $r$-spin structures
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 5
SP - 1635
EP - 1689
AB - The subject of this article is the notion of $r$-spin structure: a line bundle whose $r$th power is isomorphic to the canonical bundle. Over the moduli functor ${\mathsf {M}}_g$ of smooth genus-$g$ curves, $r$-spin structures form a finite torsor under the group of $r$-torsion line bundles. Over the moduli functor $\overline{\mathsf {M}}_g$ of stable curves, $r$-spin structures form an étale stack, but both the finiteness and the torsor structure are lost.In the present work, we show how this bad picture can be definitely improved just by placing the problem in the category of Abramovich and Vistoli’s twisted curves. First, we find that within such a category there exist several different compactifications of ${\mathsf {M}}_g$; each one corresponds to a different multiindex $\vec{l}=(l_0,l_1,\dots )$ identifying a notion of stability: $\vec{l}$-stability. Then, we determine the choices of $\vec{l}$ for which $r$-spin structures form a finite torsor over the moduli of $\vec{l}$-stable curves.
LA - eng
KW - Spin structures; twisted curves; moduli of curves; moduli stack of curves; spin structures
UR - http://eudml.org/doc/10358
ER -

References

top
  1. Dan Abramovich, Lectures on Gromov-Witten invariants of orbifolds Zbl1151.14005
  2. Dan Abramovich, Alessio Corti, Angelo Vistoli, Twisted bundles and admissible covers, Comm. Algebra 31 (2003), 3547-3618 Zbl1077.14034MR2007376
  3. Dan Abramovich, Tom Graber, Angelo Vistoli, Algebraic orbifold quantum products, Orbifolds in mathematics and physics (Madison, WI, 2001) 310 (2002), 1-24, Amer. Math. Soc., Providence, RI Zbl1067.14055MR1950940
  4. Dan Abramovich, Tyler J. Jarvis, Moduli of twisted spin curves, Proc. Amer. Math. Soc. 131 (2003), 685-699 (electronic) Zbl1037.14008MR1937405
  5. Dan Abramovich, Angelo Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002), 27-75 Zbl0991.14007MR1862797
  6. Enrico Arbarello, Maurizio Cornalba, The Picard groups of the moduli spaces of curves, Topology 26 (1987), 153-171 Zbl0625.14014MR895568
  7. M. Artin, Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165-189 Zbl0317.14001MR399094
  8. Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud, Néron models, 21 (1990), Springer-Verlag, Berlin Zbl0705.14001MR1045822
  9. Lawrence Breen, Bitorseurs et cohomologie non abélienne, The Grothendieck Festschrift, Vol. I 86 (1990), 401-476, Birkhäuser Boston, Boston, MA Zbl0743.14034MR1086889
  10. Jim Bryan, Tom Graber, The Crepant Resolution Conjecture Zbl1198.14053
  11. Charles Cadman, Using stacks to impose tangency conditions on curves, Amer. J. Math. 129 (2007), 405-427 Zbl1127.14002MR2306040
  12. Lucia Caporaso, Cinzia Casagrande, Maurizio Cornalba, Moduli of roots of line bundles on curves, Trans. Amer. Math. Soc. 359 (2007), 3733-3768 (electronic) Zbl1140.14022MR2302513
  13. Alessandro Chiodo, Towards an enumerative geometry of the moduli space of twisted curves and r-th roots Zbl1166.14018MR2238814
  14. Alessandro Chiodo, The Witten top Chern class via K -theory, J. Algebraic Geom. 15 (2006), 681-707 Zbl1117.14008MR2237266
  15. Tom Coates, Alessio Corti, Hiroshi Iritani, Hsian-Hua Tseng, Computing Genus-Zero Twisted Gromov-Witten Invariants Zbl1176.14009
  16. Maurizio Cornalba, Moduli of curves and theta-characteristics, Lectures on Riemann surfaces (Trieste, 1987) (1989), 560-589, World Sci. Publ., Teaneck, NJ Zbl0800.14011MR1082361
  17. P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969), 75-109 Zbl0181.48803MR262240
  18. C. Faber, Sergey Shadrin, Dimitri Zvonkine, Tautological relations and the r -spin Witten conjecture 
  19. Alexander Grothendieck, Technique de descente et théorèmes d’existence en géométrie algébrique. II. Le théorème d’existence en théorie formelle des modules, Séminaire Bourbaki, Vol. 5 (1995), Exp. No. 195, 369-390, Soc. Math. France, Paris Zbl0234.14007
  20. John Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983), 221-239 Zbl0533.57003MR700769
  21. T. J. Jarvis, Torsion-free sheaves and moduli of generalized spin curves, Compositio Math. 110 (1998), 291-333 Zbl0912.14010MR1602060
  22. Tyler J. Jarvis, Geometry of the moduli of higher spin curves, Internat. J. Math. 11 (2000), 637-663 Zbl1094.14504MR1780734
  23. Tyler J. Jarvis, The Picard group of the moduli of higher spin curves, New York J. Math. 7 (2001), 23-47 (electronic) Zbl0977.14010MR1838471
  24. Tyler J. Jarvis, Takashi Kimura, Arkady Vaintrob, Tensor products of Frobenius manifolds and moduli spaces of higher spin curves, Conférence Moshé Flato 1999, Vol. II (Dijon) 22 (2000), 145-166, Kluwer Acad. Publ., Dordrecht Zbl0988.81120MR1805911
  25. Kazuya Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) (1989), 191-224, Johns Hopkins Univ. Press, Baltimore, MD Zbl0776.14004MR1463703
  26. Seán Keel, Shigefumi Mori, Quotients by groupoids, Ann. of Math. (2) 145 (1997), 193-213 Zbl0881.14018MR1432041
  27. Maxim Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), 1-23 Zbl0756.35081MR1171758
  28. Andrew Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999), 495-536 Zbl0938.14003MR1719823
  29. Gérard Laumon, Laurent Moret-Bailly, Champs algébriques, 39 (2000), Springer-Verlag, Berlin Zbl0945.14005MR1771927
  30. Max Lieblich, Remarks on the stack of coherent algebras, Int. Math. Res. Not. (2006) Zbl1108.14003MR2233719
  31. Kenji Matsuki, Martin Olsson, Kawamata-Viehweg vanishing as Kodaira vanishing for stacks, Math. Res. Lett. 12 (2005), 207-217 Zbl1080.14023MR2150877
  32. Nicole Mestrano, Conjecture de Franchetta forte, Invent. Math. 87 (1987), 365-376 Zbl0585.14011MR870734
  33. James S. Milne, Étale cohomology, 33 (1980), Princeton University Press, Princeton, N.J. Zbl0433.14012MR559531
  34. David Mumford, Abelian varieties, (1970), Published for the Tata Institute of Fundamental Research, Bombay Zbl0223.14022MR282985
  35. Martin C. Olsson, (Log) twisted curves, Compos. Math. 143 (2007), 476-494 Zbl1138.14017MR2309994
  36. Alexander Polishchuk, Arkady Vaintrob, Algebraic construction of Witten’s top Chern class, Advances in algebraic geometry motivated by physics (Lowell, MA, 2000) 276 (2001), 229-249, Amer. Math. Soc., Providence, RI Zbl1051.14007
  37. Michel Raynaud, Spécialisation du foncteur de Picard. Critère numérique de représentabilité, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A1001-A1004 Zbl0148.41702MR237515
  38. Matthieu Romagny, Sur quelques aspects des champs de revêtements de courbes algébriques, (2002) 
  39. Edward Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in differential geometry (Cambridge, MA, 1990) (1991), 243-310, Lehigh Univ., Bethlehem, PA Zbl0757.53049MR1144529
  40. Edward Witten, Algebraic geometry associated with matrix models of two-dimensional gravity, Topological methods in modern mathematics (Stony Brook, NY, 1991) (1993), 235-269, Publish or Perish, Houston, TX Zbl0812.14017MR1215968

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.