A descent map for curves with totally degenerate semi-stable reduction
- [1] California State University San Marcos 333 S. Twin Oaks Valley Rd. San Marcos, CA 92096, USA
Journal de Théorie des Nombres de Bordeaux (2013)
- Volume: 25, Issue: 1, page 211-244
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topSharif, Shahed. "A descent map for curves with totally degenerate semi-stable reduction." Journal de Théorie des Nombres de Bordeaux 25.1 (2013): 211-244. <http://eudml.org/doc/275813>.
@article{Sharif2013,
abstract = {Let $K$ be a local field of residue characteristic $p$. Let $C$ be a curve over $K$ whose minimal proper regular model has totally degenerate semi-stable reduction. Under certain hypotheses, we compute the prime-to-$p$ rational torsion subgroup on the Jacobian of $C$. We also determine divisibility of line bundles on $C$, including rationality of theta characteristics and higher spin structures. These computations utilize arithmetic on the special fiber of $C$.},
affiliation = {California State University San Marcos 333 S. Twin Oaks Valley Rd. San Marcos, CA 92096, USA},
author = {Sharif, Shahed},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {semi-stable reduction; tori over finite fields; Néron models; Picard group torsion; theta characteristic},
language = {eng},
month = {4},
number = {1},
pages = {211-244},
publisher = {Société Arithmétique de Bordeaux},
title = {A descent map for curves with totally degenerate semi-stable reduction},
url = {http://eudml.org/doc/275813},
volume = {25},
year = {2013},
}
TY - JOUR
AU - Sharif, Shahed
TI - A descent map for curves with totally degenerate semi-stable reduction
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/4//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 1
SP - 211
EP - 244
AB - Let $K$ be a local field of residue characteristic $p$. Let $C$ be a curve over $K$ whose minimal proper regular model has totally degenerate semi-stable reduction. Under certain hypotheses, we compute the prime-to-$p$ rational torsion subgroup on the Jacobian of $C$. We also determine divisibility of line bundles on $C$, including rationality of theta characteristics and higher spin structures. These computations utilize arithmetic on the special fiber of $C$.
LA - eng
KW - semi-stable reduction; tori over finite fields; Néron models; Picard group torsion; theta characteristic
UR - http://eudml.org/doc/275813
ER -
References
top- M. F. Atiyah, Riemann surfaces and spin structures. Ann. Sci. École Norm. Sup. 4 (1971), 47–62. Zbl0212.56402MR286136
- M. Baker, Specialization of linear systems from curves to graphs. Algebra Number Theory 2 (2008), 613–653. Zbl1162.14018MR2448666
- S. Bosch and Q. Liu, Rational points of the group of components of a Néron model. Manuscripta Math. 98 (1999), 275–293. Zbl0934.14029MR1717533
- S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models. Springer-Verlag, 1990. Zbl0705.14001MR1045822
- A. Chiodo, Stable twisted curves and their -spin structures. Ann. Inst. Fourier 58 (2008), 1635–1689. Zbl1179.14028MR2445829
- O. Gabber, Q. Liu, and D. Lorenzini, The index of an algebraic variety. Inventiones mathematicae (2012), 1–60. Zbl1268.13009
- B. H. Gross and J. Harris, On some geometric constructions related to theta characteristics. Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, 2004, 279–311. Zbl1072.14032MR2058611
- R. Hartshorne, Algebraic geometry. Springer-Verlag, 1977. Zbl0531.14001MR463157
- N. M. Katz, Galois properties of torsion points on abelian varieties. Inventiones Mathematicae 62 (1981), 481–502. Zbl0471.14023MR604840
- Q. Liu, Algebraic geometry and arithmetic curves. Oxford Graduate Texts in Mathematics 6, Oxford, 2002. Zbl1103.14001MR1917232
- D. Mumford, Theta characteristics of an algebraic curve. Ann. Sci. École Norm. Sup. 4 (1971), 181–192. Zbl0216.05904MR292836
- T. Ono, Arithmetic of algebraic tori. Ann. of Math. 74 (1961), 101–139. Zbl0119.27801MR124326
- M. Pacini, On Néron models of moduli spaces of theta characteristics. J. Algebra 323 (2010), 658–670. Zbl1194.14045MR2574856
- R. Parimala and W. Scharlau, On the canonical class of a curve and the extension property for quadratic forms. Recent advances in real algebraic geometry and quadratic forms, AMS, Providence, 1994, 339–350. Zbl0815.14004MR1260719
- B. Poonen and E. Rains, Self cup products and the theta characteristic torsor. Math. Res. Letters 18 (2011), 1305–1318. Zbl1297.18005MR2915483
- M. Raynaud, Spécialisation du foncteur de Picard. Inst. Hautes Études Sci. Publ. Math. 38 (1970), 27–76. Zbl0207.51602MR282993
- V. Suresh, On the canonical class of hyperelliptic curves. Recent advances in real algebraic geometry and quadratic forms, AMS, Providence, 1994, 399–404. Zbl0815.14005MR1260723
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.