A global mirror symmetry framework for the Landau–Ginzburg/Calabi–Yau correspondence
Alessandro Chiodo[1]; Yongbin Ruan[2]
- [1] Institut de Mathématiques de Jussieu UMR 7586 CNRS Université Pierre et Marie Curie Case 247 4 Place Jussieu 75252 Paris cedex 05 France
- [2] Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 7, page 2803-2864
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topChiodo, Alessandro, and Ruan, Yongbin. "A global mirror symmetry framework for the Landau–Ginzburg/Calabi–Yau correspondence." Annales de l’institut Fourier 61.7 (2011): 2803-2864. <http://eudml.org/doc/275578>.
@article{Chiodo2011,
abstract = {We show how the Landau–Ginzburg/Calabi–Yau correspondence for the quintic three-fold can be cast into a global mirror symmetry framework. Then we draw inspiration from Berglund–Hübsch mirror duality construction to provide an analogue conjectural picture featuring all Calabi–Yau hypersurfaces within weighted projective spaces and certain quotients by finite abelian group actions.},
affiliation = {Institut de Mathématiques de Jussieu UMR 7586 CNRS Université Pierre et Marie Curie Case 247 4 Place Jussieu 75252 Paris cedex 05 France; Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA},
author = {Chiodo, Alessandro, Ruan, Yongbin},
journal = {Annales de l’institut Fourier},
keywords = {Mirror symmetry; Gromov–Witten theory; Calabi–Yau varieties; moduli of curves; mirror symmetry; Gromov-Witten theory; Calabi-Yau varieties},
language = {eng},
number = {7},
pages = {2803-2864},
publisher = {Association des Annales de l’institut Fourier},
title = {A global mirror symmetry framework for the Landau–Ginzburg/Calabi–Yau correspondence},
url = {http://eudml.org/doc/275578},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Chiodo, Alessandro
AU - Ruan, Yongbin
TI - A global mirror symmetry framework for the Landau–Ginzburg/Calabi–Yau correspondence
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 7
SP - 2803
EP - 2864
AB - We show how the Landau–Ginzburg/Calabi–Yau correspondence for the quintic three-fold can be cast into a global mirror symmetry framework. Then we draw inspiration from Berglund–Hübsch mirror duality construction to provide an analogue conjectural picture featuring all Calabi–Yau hypersurfaces within weighted projective spaces and certain quotients by finite abelian group actions.
LA - eng
KW - Mirror symmetry; Gromov–Witten theory; Calabi–Yau varieties; moduli of curves; mirror symmetry; Gromov-Witten theory; Calabi-Yau varieties
UR - http://eudml.org/doc/275578
ER -
References
top- D. Abramovich, T. Graber, A. Vistoli, Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008) Zbl1193.14070MR2450211
- D. Abramovich, T. J. Jarvis, Moduli of twisted spin curves, Proc. Amer. Math. Soc. 131 (2003), 685-699 Zbl1037.14008MR1937405
- M. Aganagic, V. Bouchard, A. Klemm, Topological Strings and (Almost) Modular Forms, Commun. Math. Phys. 277 (2008), 771-819 Zbl1165.81037MR2365453
- V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, II (1988), Birkhäuser, Boston Zbl1297.32001MR966191
- V. V. Batyrev, L. A. Borisov, Dual Cones and Mirror Symmetry for Generalized Calabi–Yau Manifolds, Mirror Symmetry II (1997), 71-86, Amer. Math. Soc. Providence, RI Zbl0927.14019MR1416334
- P. Berglund, T. Hübsch, A Generalized Construction of Mirror Manifolds, Nuclear Physics B 393 (1993), 397-391 Zbl1245.14039MR1214325
- P. Berglund, S. Katz, Mirror Symmetry Constructions: A Review, Mirror Symmetry II (1997), 87-113, Amer. Math. Soc. Providence, RI Zbl0919.14023MR1416335
- M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, Kodaira–Spencer Theory of Gravity and Exact Results for Quantum String Amplitudes, Comm. Math. Phy. 165 (1994), 311-427 Zbl0815.53082MR1301851
- S. Boissière, É Mann, F. Perroni, model for the orbifold Chow ring of weighted projective spaces, Communications in Algebra 37 (2009), 503-514 Zbl1178.14056MR2493797
- L. Borisov, Berglund–Hübsch mirror symmetry via vertex algebras Zbl1317.17032
- P. Candelas, X. C. De La Ossa, P. S. Green, L. Parkes, A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991), 21-74 Zbl1098.32506MR1115626
- A. Chiodo, The Witten top Chern class via -theory, J. Algebraic Geom. 15 (2006), 681-707 Zbl1117.14008MR2237266
- A. Chiodo, Stable twisted curves and their -spin structures (Courbes champêtres stables et leurs structures -spin), Ann. Inst. Fourier 58 (2008), 1635-1689 Zbl1179.14028MR2445829
- A. Chiodo, Towards an enumerative geometry of the moduli space of twisted curves and th roots, Compos. Math. 144 (2008), 1461-1496 Zbl1166.14018MR2474317
- A. Chiodo, H. Iritani, Y. Ruan, Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence Zbl1298.14042
- A. Chiodo, Y. Ruan, Landau–Ginzburg/Calabi–Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math. 182 (2010), 117-165 Zbl1197.14043MR2672282
- A. Chiodo, Y. Ruan, LG/CY correspondence: the state space isomorphism, Adv. Math. 227 (2011), 2157-2188 Zbl1245.14038MR2807086
- A. Chiodo, D. Zvonkine, Twisted Gromov–Witten -spin potentials and Givental’s quantization, Adv. Theor. Math. Phys. 13 (2009), 1335-1369 Zbl1204.81099MR2672465
- P. Clarke, Duality for toric Landau-Ginzburg models
- T. Coates, On the Crepant Resolution Conjecture in the Local Case, Communications in Mathematical Physics 287 (2009), 1071-1108 Zbl1200.53081MR2486673
- T. Coates, A. Corti, H. Iritani, H.-H. Tseng, Computing Genus-Zero Twisted Gromov–Witten Invariants, Duke Math. 147 (2009), 377-438 Zbl1176.14009MR2510741
- T. Coates, A. Corti, Y.-P. Lee, H.-H. Tseng, The quantum orbifold cohomology of weighted projective spaces, Acta Math. 202 (2009), 139-193 Zbl1213.53106MR2506749
- T. Coates, A. Givental, Quantum Riemann–Roch, Lefschetz and Serre, Annals of mathematics 165 (2007), 15-53 Zbl1189.14063MR2276766
- T. Coates, H. Iritani, H.-H. Tseng, Wall-Crossings in Toric Gromov-Witten Theory I: Crepant Examples, Geometry and Topology 13 (2009), 2675-2744 Zbl1184.53086MR2529944
- T. Coates, Y. Ruan, Quantum Cohomology and Crepant Resolutions: A Conjecture Zbl1275.53083
- P. Deligne, Local behavior of Hodge structures at infinity, Mirror Symmetry II (1997), 683-699, GreeneB.B. Zbl0939.14005MR1416353
- I. Dolgachev, Weighted projective varieties, Proc. Vancouver 1981 956 (1982), 34-71, Springer Zbl0516.14014MR704986
- C. Faber, S. Shadrin, D. Zvonkine, Tautological relations and the r-spin Witten conjecture, Annales Scientifiques de l’ENS 43 (2010), 621-658 Zbl1203.53090MR2722511
- H. Fan, T. Jarvis, E. Merrell, Y. Ruan, Witten’s Integrable Hierarchies Conjecture
- H. Fan, T. Jarvis, Y. Ruan, The Witten equation and its virtual fundamental cycle
- H. Fan, T. Jarvis, Y. Ruan, The Witten equation, mirror symmetry and quantum singularity theory Zbl1310.32032
- H. Fan, T. Jarvis, Y. Ruan, Geometry and analysis of spin equations, Comm. Pure Appl. Math. 61 (2008), 745-788 Zbl1141.58012MR2400605
- A. Givental, A mirror theorem for toric complete intersections, Topological field theory, primitive forms and related topics (Kyoto, 1996) 160, 141-175 Zbl0936.14031
- A. Givental, Gromov–Witten invariants and quantization of quadratic hamiltonians, Frobenius manifolds (2004), 91-112, Vieweg, Wiesbaden Zbl1075.53091
- B. R. Greene, D. R. Morrison, M. R. Plesser, Mirror manifolds in higher dimension, Comm. Math. Phys. 173 (1995), 559-597 Zbl0842.32014MR1357989
- M. Herbst, K. Hori, D. Page, Phases Of N=2 Theories In 1+1 Dimensions With Boundary
- C. Hertling, geometry, Frobenius manifolds, their connections and their construction for singularities, J. Reine Angew. Math. 555 (2003), 77-161 Zbl1040.53095MR1956595
- K. Hori, J. Walcher, D-branes from matrix factorizations, Strings 04. Part I. C. R. Phys. 5 (2004), 1061-1070 MR2121690
- P. Horja, Hypergeometric functions and mirror symmetry in toric varieties Zbl1075.18006
- M. Huang, A. Klemm, S. Quackenbush, Topological string theory on compact Calabi–Yau: modularity and boundary conditions, Homological mirror symmetry 757 (2009), 45-102, Springer, Berlin Zbl1166.81358MR2596635
- K. Intriligator, C. Vafa, Landau–Ginzburg orbifolds, Nuclear Phys. B 339 (1990), 95-120 MR1061738
- I. Iritani, An integral structure in quantum cohomology and mirror symmetry for orbifolds, Adv. in Math. 222 (2009), 1016-1079 Zbl1190.14054MR2553377
- M. U. Isik, Equivalence of the derived category of a variety with a singularity category Zbl1312.14052
- T. J. Jarvis, T. Kimura, A. Vaintrob, Moduli spaces of higher spin curves and integrable hierarchies, Compositio Math. 126 (2001), 157-212 Zbl1015.14028MR1827643
- R. Kaufmann, A note on the two approaches to stringy functors for orbifolds
- R. Kaufmann, Singularities with symmetries, orbifold Frobenius algebras and mirror symmetry, Contemp. Math. 403 (2006), 67-116 Zbl1116.14037MR2234885
- M. Kontsevich
- M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), 1-23 Zbl0756.35081
- M. Kontsevich, Y. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Commun. Math. Phys. 164 (1994), 525-562 Zbl0853.14020MR1291244
- M. Krawitz, FJRW rings and Landau–Ginzburg Mirror Symmetry
- M. Krawitz, Y. Shen, Landau-Ginzburg/Calabi-Yau correspondence of all genera for elliptic orbifold P
- Marc Krawitz, Nathan Priddis, Pedro Acosta, Natalie Bergin, Himal Rathnakumara, FJRW-rings and Mirror Symmetry, Comm. Math. Phys. 296 (2010), 145-174 Zbl1250.81087MR2606631
- M. Kreuzer, H. Skarke, On the classification of quasihomogeneous functions, Comm. Math. Phys. 150 (1992), 137-147 Zbl0767.57019MR1188500
- M. Kreuzer, H. Skarke, All abelian symmetries of Landau-Ginzburg potentials, Nucl. Phys. B 405 (1993), 305-325 Zbl0990.81635MR1240688
- A. Li, Y. Ruan, Symplectic surgeries and Gromov–Witten invariants of Calabi–Yau three-folds, Invent. Math. 145 (2001), 151-218 Zbl1062.53073MR1839289
- B. Lian, K. Liu, S. Yau, Mirror principle. I., Asian J. Math. 1 (1997), 729-763 Zbl0953.14026MR1621573
- E. J. N. Looijenga, Isolated singular points on complete intersections, 77 (1984), Cambridge University Press Zbl1272.14002MR747303
- D. Maulik, R. Pandharipande, A topological view of Gromov–Witten theory, Topology 45 (2006), 887-918 Zbl1112.14065MR2248516
- T. Milanov, Y. Ruan, Gromov–Witten theory of elliptic orbifold P and quasi-modular forms
- D. R. Morrison, Beyond the Kähler cone, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) 9, 361-376, Israel Math. Conf. Proc. Zbl0847.32034
- D. R. Morrison, Mathematical Aspects of Mirror Symmetry, Complex Algebraic Geometry 3 (1997), 265-340, KollárJ.J. Zbl0932.14022MR1442525
- P. Orlik, L. Solomon, Singularities II; Automorphisms of forms, Math. Ann. 231 (1978), 229-240 Zbl0352.14002MR476735
- D. Orlov, Derived categories of coherent sheaves and triangulated categories of singularities Zbl0996.18007
- F. Pham, La descente des cols par les onglets de Lefschetz, avec vues sur Gauss–Manin, Systèmes différentiels et singularités 130 (1985), 11-47 Zbl0597.32012MR804048
- A. Polishchuk, Witten’s top Chern class on the moduli space of higher spin curves, Frobenius manifolds (2004), 253-264, Vieweg, Wiesbaden Zbl1105.14010MR2115773
- A. Polishchuk, A. Vaintrob, Chern
- A. Polishchuk, A. Vaintrob, Algebraic construction of Witten’s top Chern class, Advances in algebraic geometry motivated by physics (Lowell, MA, 2000) 276 (2001), 229-249, Amer. Math. Soc., Providence, RI Zbl1051.14007MR1837120
- Y. Ruan, The Witten equation and geometry of Landau–Ginzburg model
- J. Steenbrink, Intersection form for quasi-homogeneous singularities, Compositio Mathematica 34 (1977), 211-223 Zbl0347.14001MR453735
- C. Vafa, N. Warner, Catastrophes and the classification of conformal field theories, Phys. Lett. B 218 (1989) MR983349
- C. T. C. Wall, A note on symmetry of singularities, Bull. London Math. Soc. 12 (1980), 169-175 Zbl0427.32010MR572095
- E. Witten, Two-dimensional gravity and intersection theory on the moduli space, Surveys in Diff. Geom. 1 (1991), 243-310 Zbl0757.53049MR1144529
- E. Witten, Algebraic geometry associated with matrix models of two-dimensional gravity, Topological methods in modern mathematics (Stony Brook, NY, 1991) (1993), 235-269, Publish or Perish, Houston, TX Zbl0812.14017MR1215968
- E. Witten, Phases of theories in two dimensions, Nucl.Phys. B 403 (1993), 159-222 Zbl0910.14020MR1232617
- A. Zinger, Standard vs. reduced genus-one Gromov–Witten invariants, Geom. Topol. 12 (2008), 1203-1241 Zbl1167.14009MR2403808
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.